Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfth Structured version   Visualization version   GIF version

Theorem bj-nfth 31606
Description: Any variable is not free in a theorem. (Contributed by BJ, 6-May-2019.)
Hypothesis
Ref Expression
bj-nfth.1 𝜑
Assertion
Ref Expression
bj-nfth ℲℲ𝑥𝜑

Proof of Theorem bj-nfth
StepHypRef Expression
1 bj-nftht 31603 . 2 (∀𝑥𝜑 → ℲℲ𝑥𝜑)
2 bj-nfth.1 . 2 𝜑
31, 2mpg 1702 1 ℲℲ𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ℲℲwnff 31598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700
This theorem depends on definitions:  df-bi 195  df-bj-nf 31599
This theorem is referenced by:  bj-nftru  31607
  Copyright terms: Public domain W3C validator