![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restn0b | Structured version Visualization version GIF version |
Description: Alternate version of bj-restn0 33168. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restn0b | ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3765 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ∈ 𝑉) | |
2 | eldifsni 4353 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → 𝑋 ≠ ∅) | |
3 | 1, 2 | jca 553 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅)) |
4 | 3 | anim1i 591 | . . 3 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) ∧ 𝐴 ∈ 𝑊)) |
5 | an32 856 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) ∧ 𝐴 ∈ 𝑊) ↔ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅)) | |
6 | 4, 5 | sylib 208 | . 2 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅)) |
7 | bj-restn0 33168 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ≠ ∅ → (𝑋 ↾t 𝐴) ≠ ∅)) | |
8 | 7 | imp 444 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ 𝑋 ≠ ∅) → (𝑋 ↾t 𝐴) ≠ ∅) |
9 | 6, 8 | syl 17 | 1 ⊢ ((𝑋 ∈ (𝑉 ∖ {∅}) ∧ 𝐴 ∈ 𝑊) → (𝑋 ↾t 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ≠ wne 2823 ∖ cdif 3604 ∅c0 3948 {csn 4210 (class class class)co 6690 ↾t crest 16128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-rest 16130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |