Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsnid Structured version   Visualization version   GIF version

Theorem bj-restsnid 34372
Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn 34367 and bj-restsnss 34368. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsnid ({𝐴} ↾t 𝐴) = {𝐴}

Proof of Theorem bj-restsnid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3988 . . 3 𝐴𝐴
2 bj-restsnss 34368 . . 3 ((𝐴 ∈ V ∧ 𝐴𝐴) → ({𝐴} ↾t 𝐴) = {𝐴})
31, 2mpan2 689 . 2 (𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴})
4 df-rest 16690 . . . . 5 t = (𝑥 ∈ V, 𝑦 ∈ V ↦ ran (𝑧𝑥 ↦ (𝑧𝑦)))
54reldmmpo 7279 . . . 4 Rel dom ↾t
65ovprc2 7190 . . 3 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = ∅)
7 snprc 4646 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
87biimpi 218 . . 3 𝐴 ∈ V → {𝐴} = ∅)
96, 8eqtr4d 2859 . 2 𝐴 ∈ V → ({𝐴} ↾t 𝐴) = {𝐴})
103, 9pm2.61i 184 1 ({𝐴} ↾t 𝐴) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2110  Vcvv 3494  cin 3934  wss 3935  c0 4290  {csn 4560  cmpt 5138  ran crn 5550  (class class class)co 7150  t crest 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-rest 16690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator