 Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spcimdvv Structured version   Visualization version   GIF version

Theorem bj-spcimdvv 33010
 Description: Remove from spcimdv 3321 dependency on ax-7 1981, ax-8 2032, ax-10 2059, ax-11 2074, ax-12 2087 ax-13 2282, ax-ext 2631, df-cleq 2644, df-clab 2638 (and df-nfc 2782, df-v 3233, df-or 384, df-tru 1526, df-nf 1750) at the price of adding a DV condition on 𝑥, 𝐵 (but in usages, 𝑥 is typically a dummy, hence fresh, variable). For the version without this DV condition, see bj-spcimdv 33009. (Contributed by BJ, 3-Nov-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-spcimdvv.1 (𝜑𝐴𝐵)
bj-spcimdvv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
bj-spcimdvv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem bj-spcimdvv
StepHypRef Expression
1 bj-spcimdvv.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
21ex 449 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
32alrimiv 1895 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
4 bj-spcimdvv.1 . 2 (𝜑𝐴𝐵)
5 bj-elissetv 32986 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
6 exim 1801 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜓𝜒)))
75, 6syl5 34 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → ∃𝑥(𝜓𝜒)))
8 19.36v 1960 . . 3 (∃𝑥(𝜓𝜒) ↔ (∀𝑥𝜓𝜒))
97, 8syl6ib 241 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → (∀𝑥𝜓𝜒)))
103, 4, 9sylc 65 1 (𝜑 → (∀𝑥𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745  df-clel 2647 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator