![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spimevv | Structured version Visualization version GIF version |
Description: Version of spimev 2295 with a dv condition, which does not require ax-13 2282. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-spimevv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-spimevv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | bj-spimevv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | bj-spimev 32845 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-tru 1526 df-ex 1745 df-nf 1750 |
This theorem is referenced by: bj-axsep 32918 bj-dtru 32922 |
Copyright terms: Public domain | W3C validator |