Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbbii Structured version   Visualization version   GIF version

Theorem bj-ssbbii 32319
Description: Biconditional property for substitution. Uses only ax-1--5. (Contributed by BJ, 22-Dec-2020.)
Hypothesis
Ref Expression
bj-ssbbii.1 (𝜑𝜓)
Assertion
Ref Expression
bj-ssbbii ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)

Proof of Theorem bj-ssbbii
StepHypRef Expression
1 bj-ssbbi 32317 . 2 (∀𝑥(𝜑𝜓) → ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓))
2 bj-ssbbii.1 . 2 (𝜑𝜓)
31, 2mpg 1721 1 ([𝑡/𝑥]b𝜑 ↔ [𝑡/𝑥]b𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wssb 32314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836
This theorem depends on definitions:  df-bi 197  df-ssb 32315
This theorem is referenced by:  bj-ssbssblem  32344  bj-ssbcom3lem  32345
  Copyright terms: Public domain W3C validator