Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbcom3lem Structured version   Visualization version   GIF version

Theorem bj-ssbcom3lem 32313
 Description: Lemma for bj-ssbcom3 when setvar variables are disjoint. Remark: does not seem useful. (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-ssbcom3lem ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b[𝑡/𝑥]b𝜑)
Distinct variable group:   𝑥,𝑦,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡)

Proof of Theorem bj-ssbcom3lem
StepHypRef Expression
1 equequ2 1950 . . . . . . 7 (𝑦 = 𝑡 → (𝑥 = 𝑦𝑥 = 𝑡))
21imbi1d 331 . . . . . 6 (𝑦 = 𝑡 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑡𝜑)))
32pm5.74i 260 . . . . 5 ((𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)) ↔ (𝑦 = 𝑡 → (𝑥 = 𝑡𝜑)))
43albii 1744 . . . 4 (∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)) ↔ ∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑡𝜑)))
5 19.21v 1865 . . . 4 (∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
6 19.21v 1865 . . . 4 (∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑡𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
74, 5, 63bitr3i 290 . . 3 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
87albii 1744 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
9 bj-ssb1 32296 . . . 4 ([𝑦/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
109bj-ssbbii 32287 . . 3 ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b𝑥(𝑥 = 𝑦𝜑))
11 bj-ssb1 32296 . . 3 ([𝑡/𝑦]b𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
1210, 11bitri 264 . 2 ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
13 bj-ssb1 32296 . . . 4 ([𝑡/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
1413bj-ssbbii 32287 . . 3 ([𝑡/𝑦]b[𝑡/𝑥]b𝜑 ↔ [𝑡/𝑦]b𝑥(𝑥 = 𝑡𝜑))
15 bj-ssb1 32296 . . 3 ([𝑡/𝑦]b𝑥(𝑥 = 𝑡𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
1614, 15bitri 264 . 2 ([𝑡/𝑦]b[𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡𝜑)))
178, 12, 163bitr4i 292 1 ([𝑡/𝑦]b[𝑦/𝑥]b𝜑 ↔ [𝑡/𝑦]b[𝑡/𝑥]b𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1478  [wssb 32282 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-11 2031 This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-ssb 32283 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator