 Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbequ1 Structured version   Visualization version   GIF version

Theorem bj-ssbequ1 32628
 Description: This uses ax-12 2046 with a direct reference to ax12v 2047. Therefore, compared to bj-ax12 32618, there is a hidden use of sp 2052. Note that with ax-12 2046, it can be proved with dv condition on 𝑥, 𝑡. See sbequ1 2109. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbequ1 (𝑥 = 𝑡 → (𝜑 → [𝑡/𝑥]b𝜑))

Proof of Theorem bj-ssbequ1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 equtr2 1953 . . . . . . . 8 ((𝑦 = 𝑡𝑥 = 𝑡) → 𝑦 = 𝑥)
21equcomd 1945 . . . . . . 7 ((𝑦 = 𝑡𝑥 = 𝑡) → 𝑥 = 𝑦)
3 ax12v 2047 . . . . . . 7 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
42, 3syl 17 . . . . . 6 ((𝑦 = 𝑡𝑥 = 𝑡) → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
54expimpd 629 . . . . 5 (𝑦 = 𝑡 → ((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
65com12 32 . . . 4 ((𝑥 = 𝑡𝜑) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
76alrimiv 1854 . . 3 ((𝑥 = 𝑡𝜑) → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
87ex 450 . 2 (𝑥 = 𝑡 → (𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))))
9 df-ssb 32604 . 2 ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
108, 9syl6ibr 242 1 (𝑥 = 𝑡 → (𝜑 → [𝑡/𝑥]b𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∀wal 1480  [wssb 32603 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-12 2046 This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1704  df-ssb 32604 This theorem is referenced by:  bj-ssbid1  32631
 Copyright terms: Public domain W3C validator