MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bl2in Structured version   Visualization version   GIF version

Theorem bl2in 22115
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 1062 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 22049 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (∞Met‘𝑋))
4 simpl2 1063 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑃𝑋)
5 simpl3 1064 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑄𝑋)
6 rexr 10029 . . 3 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
76ad2antrl 763 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ*)
8 simprl 793 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ)
9 rexadd 12006 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅))
108, 8, 9syl2anc 692 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅))
118recnd 10012 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℂ)
12112timesd 11219 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) = (𝑅 + 𝑅))
1310, 12eqtr4d 2658 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (2 · 𝑅))
14 id 22 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ)
15 metcl 22047 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐷𝑄) ∈ ℝ)
16 2re 11034 . . . . . . . 8 2 ∈ ℝ
17 2pos 11056 . . . . . . . 8 0 < 2
1816, 17pm3.2i 471 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
19 lemuldiv2 10848 . . . . . . 7 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2018, 19mp3an3 1410 . . . . . 6 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2114, 15, 20syl2anr 495 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ 𝑅 ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2221biimprd 238 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ ((𝑃𝐷𝑄) / 2) → (2 · 𝑅) ≤ (𝑃𝐷𝑄)))
2322impr 648 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) ≤ (𝑃𝐷𝑄))
2413, 23eqbrtrd 4635 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))
25 bldisj 22113 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
263, 4, 5, 7, 7, 24, 25syl33anc 1338 1 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  cin 3554  c0 3891   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880   + caddc 9883   · cmul 9885  *cxr 10017   < clt 10018  cle 10019   / cdiv 10628  2c2 11014   +𝑒 cxad 11888  ∞Metcxmt 19650  Metcme 19651  ballcbl 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-2 11023  df-xneg 11890  df-xadd 11891  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator