MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcls Structured version   Visualization version   GIF version

Theorem blcls 23118
Description: The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blcls ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blcls
StepHypRef Expression
1 mopni.1 . . 3 𝐽 = (MetOpen‘𝐷)
2 blcld.3 . . 3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
31, 2blcld 23117 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑆 ∈ (Clsd‘𝐽))
4 blssm 23030 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
5 elbl 23000 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅)))
6 xmetcl 22943 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
763expa 1114 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
873adantl3 1164 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
9 simpl3 1189 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
10 xrltle 12545 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
118, 9, 10syl2anc 586 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) < 𝑅 → (𝑃𝐷𝑧) ≤ 𝑅))
1211expimpd 456 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((𝑧𝑋 ∧ (𝑃𝐷𝑧) < 𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
135, 12sylbid 242 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑅) → (𝑃𝐷𝑧) ≤ 𝑅))
1413ralrimiv 3183 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅)
15 ssrab 4051 . . . 4 ((𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ ((𝑃(ball‘𝐷)𝑅) ⊆ 𝑋 ∧ ∀𝑧 ∈ (𝑃(ball‘𝐷)𝑅)(𝑃𝐷𝑧) ≤ 𝑅))
164, 14, 15sylanbrc 585 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅})
1716, 2sseqtrrdi 4020 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆)
18 eqid 2823 . . 3 𝐽 = 𝐽
1918clsss2 21682 . 2 ((𝑆 ∈ (Clsd‘𝐽) ∧ (𝑃(ball‘𝐷)𝑅) ⊆ 𝑆) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
203, 17, 19syl2anc 586 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ((cls‘𝐽)‘(𝑃(ball‘𝐷)𝑅)) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  {crab 3144  wss 3938   cuni 4840   class class class wbr 5068  cfv 6357  (class class class)co 7158  *cxr 10676   < clt 10677  cle 10678  ∞Metcxmet 20532  ballcbl 20534  MetOpencmopn 20537  Clsdccld 21626  clsccl 21628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-cls 21631
This theorem is referenced by:  blsscls  23119  cnllycmp  23562  cncmet  23927
  Copyright terms: Public domain W3C validator