MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcvx Structured version   Visualization version   GIF version

Theorem blcvx 23408
Description: An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
blcvx.s 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅)
Assertion
Ref Expression
blcvx (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆)

Proof of Theorem blcvx
StepHypRef Expression
1 simpr3 1192 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
2 elicc01 12857 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
31, 2sylib 220 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
43simp1d 1138 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
54recnd 10671 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
6 simpr1 1190 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐴𝑆)
7 blcvx.s . . . . . . . 8 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅)
86, 7eleqtrdi 2925 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐴 ∈ (𝑃(ball‘(abs ∘ − ))𝑅))
9 cnxmet 23383 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
10 simpll 765 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑃 ∈ ℂ)
11 simplr 767 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑅 ∈ ℝ*)
12 elbl 23000 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐴 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐴) < 𝑅)))
139, 10, 11, 12mp3an2i 1462 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐴 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐴 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐴) < 𝑅)))
148, 13mpbid 234 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐴 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐴) < 𝑅))
1514simpld 497 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐴 ∈ ℂ)
165, 15mulcld 10663 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · 𝐴) ∈ ℂ)
17 1re 10643 . . . . . . 7 1 ∈ ℝ
18 resubcl 10952 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
1917, 4, 18sylancr 589 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
2019recnd 10671 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
21 simpr2 1191 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐵𝑆)
2221, 7eleqtrdi 2925 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐵 ∈ (𝑃(ball‘(abs ∘ − ))𝑅))
23 elbl 23000 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐵 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐵 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐵) < 𝑅)))
249, 10, 11, 23mp3an2i 1462 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐵 ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (𝐵 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐵) < 𝑅)))
2522, 24mpbid 234 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝐵 ∈ ℂ ∧ (𝑃(abs ∘ − )𝐵) < 𝑅))
2625simpld 497 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝐵 ∈ ℂ)
2720, 26mulcld 10663 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝐵) ∈ ℂ)
2816, 27addcld 10662 . . 3 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ)
29 eqid 2823 . . . . . . 7 (abs ∘ − ) = (abs ∘ − )
3029cnmetdval 23381 . . . . . 6 ((𝑃 ∈ ℂ ∧ ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (abs‘(𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))))
3110, 28, 30syl2anc 586 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (abs‘(𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))))
325, 10, 15subdid 11098 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · (𝑃𝐴)) = ((𝑇 · 𝑃) − (𝑇 · 𝐴)))
3320, 10, 26subdid 11098 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝑃𝐵)) = (((1 − 𝑇) · 𝑃) − ((1 − 𝑇) · 𝐵)))
3432, 33oveq12d 7176 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵))) = (((𝑇 · 𝑃) − (𝑇 · 𝐴)) + (((1 − 𝑇) · 𝑃) − ((1 − 𝑇) · 𝐵))))
355, 10mulcld 10663 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · 𝑃) ∈ ℂ)
3620, 10mulcld 10663 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑃) ∈ ℂ)
3735, 36, 16, 27addsub4d 11046 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)) − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (((𝑇 · 𝑃) − (𝑇 · 𝐴)) + (((1 − 𝑇) · 𝑃) − ((1 − 𝑇) · 𝐵))))
38 ax-1cn 10597 . . . . . . . . . . 11 1 ∈ ℂ
39 pncan3 10896 . . . . . . . . . . 11 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
405, 38, 39sylancl 588 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1)
4140oveq1d 7173 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑃) = (1 · 𝑃))
425, 20, 10adddird 10668 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑃) = ((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)))
43 mulid2 10642 . . . . . . . . . 10 (𝑃 ∈ ℂ → (1 · 𝑃) = 𝑃)
4443ad2antrr 724 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 · 𝑃) = 𝑃)
4541, 42, 443eqtr3d 2866 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)) = 𝑃)
4645oveq1d 7173 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (((𝑇 · 𝑃) + ((1 − 𝑇) · 𝑃)) − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
4734, 37, 463eqtr2d 2864 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵))) = (𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))))
4847fveq2d 6676 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) = (abs‘(𝑃 − ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))))
4931, 48eqtr4d 2861 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))))
5010, 15subcld 10999 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃𝐴) ∈ ℂ)
515, 50mulcld 10663 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑇 · (𝑃𝐴)) ∈ ℂ)
5210, 26subcld 10999 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃𝐵) ∈ ℂ)
5320, 52mulcld 10663 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝑃𝐵)) ∈ ℂ)
5451, 53addcld 10662 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵))) ∈ ℂ)
5554abscld 14798 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
5655adantr 483 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
5751abscld 14798 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑇 · (𝑃𝐴))) ∈ ℝ)
5853abscld 14798 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ∈ ℝ)
5957, 58readdcld 10672 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
6059adantr 483 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
61 simpr 487 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → 𝑅 ∈ ℝ)
6251, 53abstrid 14818 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ≤ ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))))
6362adantr 483 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ≤ ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))))
64 oveq1 7165 . . . . . . . . . . . 12 (𝑇 = 0 → (𝑇 · (𝑃𝐴)) = (0 · (𝑃𝐴)))
6550mul02d 10840 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 · (𝑃𝐴)) = 0)
6664, 65sylan9eqr 2880 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (𝑇 · (𝑃𝐴)) = 0)
6766abs00bd 14653 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (abs‘(𝑇 · (𝑃𝐴))) = 0)
68 oveq2 7166 . . . . . . . . . . . . . 14 (𝑇 = 0 → (1 − 𝑇) = (1 − 0))
69 1m0e1 11761 . . . . . . . . . . . . . 14 (1 − 0) = 1
7068, 69syl6eq 2874 . . . . . . . . . . . . 13 (𝑇 = 0 → (1 − 𝑇) = 1)
7170oveq1d 7173 . . . . . . . . . . . 12 (𝑇 = 0 → ((1 − 𝑇) · (𝑃𝐵)) = (1 · (𝑃𝐵)))
7252mulid2d 10661 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (1 · (𝑃𝐵)) = (𝑃𝐵))
7371, 72sylan9eqr 2880 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → ((1 − 𝑇) · (𝑃𝐵)) = (𝑃𝐵))
7473fveq2d 6676 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = (abs‘(𝑃𝐵)))
7567, 74oveq12d 7176 . . . . . . . . 9 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) = (0 + (abs‘(𝑃𝐵))))
7652abscld 14798 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐵)) ∈ ℝ)
7776recnd 10671 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐵)) ∈ ℂ)
7877addid2d 10843 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 + (abs‘(𝑃𝐵))) = (abs‘(𝑃𝐵)))
7929cnmetdval 23381 . . . . . . . . . . . . 13 ((𝑃 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑃(abs ∘ − )𝐵) = (abs‘(𝑃𝐵)))
8010, 26, 79syl2anc 586 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐵) = (abs‘(𝑃𝐵)))
8178, 80eqtr4d 2861 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 + (abs‘(𝑃𝐵))) = (𝑃(abs ∘ − )𝐵))
8225simprd 498 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐵) < 𝑅)
8381, 82eqbrtrd 5090 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 + (abs‘(𝑃𝐵))) < 𝑅)
8483adantr 483 . . . . . . . . 9 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → (0 + (abs‘(𝑃𝐵))) < 𝑅)
8575, 84eqbrtrd 5090 . . . . . . . 8 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 = 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
8685adantlr 713 . . . . . . 7 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 = 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
875, 50absmuld 14816 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑇 · (𝑃𝐴))) = ((abs‘𝑇) · (abs‘(𝑃𝐴))))
883simp2d 1139 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ 𝑇)
894, 88absidd 14784 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘𝑇) = 𝑇)
9089oveq1d 7173 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((abs‘𝑇) · (abs‘(𝑃𝐴))) = (𝑇 · (abs‘(𝑃𝐴))))
9187, 90eqtrd 2858 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑇 · (𝑃𝐴))) = (𝑇 · (abs‘(𝑃𝐴))))
9291ad2antrr 724 . . . . . . . . . 10 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑇 · (𝑃𝐴))) = (𝑇 · (abs‘(𝑃𝐴))))
9329cnmetdval 23381 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑃(abs ∘ − )𝐴) = (abs‘(𝑃𝐴)))
9410, 15, 93syl2anc 586 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐴) = (abs‘(𝑃𝐴)))
9514simprd 498 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )𝐴) < 𝑅)
9694, 95eqbrtrrd 5092 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐴)) < 𝑅)
9796ad2antrr 724 . . . . . . . . . . 11 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑃𝐴)) < 𝑅)
9850abscld 14798 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐴)) ∈ ℝ)
9998ad2antrr 724 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑃𝐴)) ∈ ℝ)
100 simplr 767 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → 𝑅 ∈ ℝ)
1014ad2antrr 724 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → 𝑇 ∈ ℝ)
102 0red 10646 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ∈ ℝ)
103102, 4, 88leltned 10795 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 < 𝑇𝑇 ≠ 0))
104103biimpar 480 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑇 ≠ 0) → 0 < 𝑇)
105104adantlr 713 . . . . . . . . . . . 12 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → 0 < 𝑇)
106 ltmul2 11493 . . . . . . . . . . . 12 (((abs‘(𝑃𝐴)) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ (𝑇 ∈ ℝ ∧ 0 < 𝑇)) → ((abs‘(𝑃𝐴)) < 𝑅 ↔ (𝑇 · (abs‘(𝑃𝐴))) < (𝑇 · 𝑅)))
10799, 100, 101, 105, 106syl112anc 1370 . . . . . . . . . . 11 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((abs‘(𝑃𝐴)) < 𝑅 ↔ (𝑇 · (abs‘(𝑃𝐴))) < (𝑇 · 𝑅)))
10897, 107mpbid 234 . . . . . . . . . 10 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (𝑇 · (abs‘(𝑃𝐴))) < (𝑇 · 𝑅))
10992, 108eqbrtrd 5090 . . . . . . . . 9 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅))
11020, 52absmuld 14816 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = ((abs‘(1 − 𝑇)) · (abs‘(𝑃𝐵))))
11117a1i 11 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 1 ∈ ℝ)
1123simp3d 1140 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑇 ≤ 1)
1134, 111, 112abssubge0d 14793 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(1 − 𝑇)) = (1 − 𝑇))
114113oveq1d 7173 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((abs‘(1 − 𝑇)) · (abs‘(𝑃𝐵))) = ((1 − 𝑇) · (abs‘(𝑃𝐵))))
115110, 114eqtrd 2858 . . . . . . . . . . . 12 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = ((1 − 𝑇) · (abs‘(𝑃𝐵))))
116115adantr 483 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((1 − 𝑇) · (𝑃𝐵))) = ((1 − 𝑇) · (abs‘(𝑃𝐵))))
11776adantr 483 . . . . . . . . . . . 12 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑃𝐵)) ∈ ℝ)
118 subge0 11155 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (0 ≤ (1 − 𝑇) ↔ 𝑇 ≤ 1))
11917, 4, 118sylancr 589 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (0 ≤ (1 − 𝑇) ↔ 𝑇 ≤ 1))
120112, 119mpbird 259 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ (1 − 𝑇))
12119, 120jca 514 . . . . . . . . . . . . 13 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((1 − 𝑇) ∈ ℝ ∧ 0 ≤ (1 − 𝑇)))
122121adantr 483 . . . . . . . . . . . 12 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) ∈ ℝ ∧ 0 ≤ (1 − 𝑇)))
12380, 82eqbrtrrd 5092 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐵)) < 𝑅)
124123adantr 483 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑃𝐵)) < 𝑅)
125 ltle 10731 . . . . . . . . . . . . . 14 (((abs‘(𝑃𝐵)) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑃𝐵)) < 𝑅 → (abs‘(𝑃𝐵)) ≤ 𝑅))
12676, 125sylan 582 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑃𝐵)) < 𝑅 → (abs‘(𝑃𝐵)) ≤ 𝑅))
127124, 126mpd 15 . . . . . . . . . . . 12 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑃𝐵)) ≤ 𝑅)
128 lemul2a 11497 . . . . . . . . . . . 12 ((((abs‘(𝑃𝐵)) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((1 − 𝑇) ∈ ℝ ∧ 0 ≤ (1 − 𝑇))) ∧ (abs‘(𝑃𝐵)) ≤ 𝑅) → ((1 − 𝑇) · (abs‘(𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
129117, 61, 122, 127, 128syl31anc 1369 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) · (abs‘(𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
130116, 129eqbrtrd 5090 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
131130adantr 483 . . . . . . . . 9 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅))
13257adantr 483 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘(𝑇 · (𝑃𝐴))) ∈ ℝ)
13358adantr 483 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((1 − 𝑇) · (𝑃𝐵))) ∈ ℝ)
134 remulcl 10624 . . . . . . . . . . . 12 ((𝑇 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑇 · 𝑅) ∈ ℝ)
1354, 134sylan 582 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (𝑇 · 𝑅) ∈ ℝ)
136 remulcl 10624 . . . . . . . . . . . 12 (((1 − 𝑇) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) · 𝑅) ∈ ℝ)
13719, 136sylan 582 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((1 − 𝑇) · 𝑅) ∈ ℝ)
138 ltleadd 11125 . . . . . . . . . . 11 ((((abs‘(𝑇 · (𝑃𝐴))) ∈ ℝ ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ∈ ℝ) ∧ ((𝑇 · 𝑅) ∈ ℝ ∧ ((1 − 𝑇) · 𝑅) ∈ ℝ)) → (((abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅) ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅)) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅))))
139132, 133, 135, 137, 138syl22anc 836 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (((abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅) ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅)) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅))))
140139adantr 483 . . . . . . . . 9 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → (((abs‘(𝑇 · (𝑃𝐴))) < (𝑇 · 𝑅) ∧ (abs‘((1 − 𝑇) · (𝑃𝐵))) ≤ ((1 − 𝑇) · 𝑅)) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅))))
141109, 131, 140mp2and 697 . . . . . . . 8 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)))
14240oveq1d 7173 . . . . . . . . . . 11 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑅) = (1 · 𝑅))
143142adantr 483 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((𝑇 + (1 − 𝑇)) · 𝑅) = (1 · 𝑅))
1445adantr 483 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → 𝑇 ∈ ℂ)
14520adantr 483 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (1 − 𝑇) ∈ ℂ)
14661recnd 10671 . . . . . . . . . . 11 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → 𝑅 ∈ ℂ)
147144, 145, 146adddird 10668 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((𝑇 + (1 − 𝑇)) · 𝑅) = ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)))
148146mulid2d 10661 . . . . . . . . . 10 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (1 · 𝑅) = 𝑅)
149143, 147, 1483eqtr3d 2866 . . . . . . . . 9 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)) = 𝑅)
150149adantr 483 . . . . . . . 8 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((𝑇 · 𝑅) + ((1 − 𝑇) · 𝑅)) = 𝑅)
151141, 150breqtrd 5094 . . . . . . 7 (((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) ∧ 𝑇 ≠ 0) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
15286, 151pm2.61dane 3106 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → ((abs‘(𝑇 · (𝑃𝐴))) + (abs‘((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
15356, 60, 61, 63, 152lelttrd 10800 . . . . 5 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 ∈ ℝ) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
15455adantr 483 . . . . . . 7 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) ∈ ℝ)
155154ltpnfd 12519 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < +∞)
156 simpr 487 . . . . . 6 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → 𝑅 = +∞)
157155, 156breqtrrd 5096 . . . . 5 ((((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) ∧ 𝑅 = +∞) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
158 0xr 10690 . . . . . . . . . 10 0 ∈ ℝ*
159158a1i 11 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ∈ ℝ*)
16098rexrd 10693 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘(𝑃𝐴)) ∈ ℝ*)
16150absge0d 14806 . . . . . . . . . 10 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ (abs‘(𝑃𝐴)))
162159, 160, 11, 161, 96xrlelttrd 12556 . . . . . . . . 9 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 < 𝑅)
163159, 11, 162xrltled 12546 . . . . . . . 8 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 0 ≤ 𝑅)
164 ge0nemnf 12569 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → 𝑅 ≠ -∞)
16511, 163, 164syl2anc 586 . . . . . . 7 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → 𝑅 ≠ -∞)
16611, 165jca 514 . . . . . 6 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑅 ∈ ℝ*𝑅 ≠ -∞))
167 xrnemnf 12515 . . . . . 6 ((𝑅 ∈ ℝ*𝑅 ≠ -∞) ↔ (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
168166, 167sylib 220 . . . . 5 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑅 ∈ ℝ ∨ 𝑅 = +∞))
169153, 157, 168mpjaodan 955 . . . 4 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (abs‘((𝑇 · (𝑃𝐴)) + ((1 − 𝑇) · (𝑃𝐵)))) < 𝑅)
17049, 169eqbrtrd 5090 . . 3 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < 𝑅)
171 elbl 23000 . . . 4 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ ∧ (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < 𝑅)))
1729, 10, 11, 171mp3an2i 1462 . . 3 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝑃(ball‘(abs ∘ − ))𝑅) ↔ (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ ℂ ∧ (𝑃(abs ∘ − )((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < 𝑅)))
17328, 170, 172mpbir2and 711 . 2 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝑃(ball‘(abs ∘ − ))𝑅))
174173, 7eleqtrrdi 2926 1 (((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝐴𝑆𝐵𝑆𝑇 ∈ (0[,]1))) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  ccom 5561  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cmin 10872  [,]cicc 12744  abscabs 14595  ∞Metcxmet 20532  ballcbl 20534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-icc 12748  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542
This theorem is referenced by:  dvlipcn  24593  blsconn  32493
  Copyright terms: Public domain W3C validator