MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bldisj Structured version   Visualization version   GIF version

Theorem bldisj 22113
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)

Proof of Theorem bldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1067 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))
2 simpr1 1065 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑅 ∈ ℝ*)
3 simpr2 1066 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑆 ∈ ℝ*)
42, 3xaddcld 12074 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
5 xmetcl 22046 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
65adantr 481 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑃𝐷𝑄) ∈ ℝ*)
7 xrlenlt 10047 . . . . 5 (((𝑅 +𝑒 𝑆) ∈ ℝ* ∧ (𝑃𝐷𝑄) ∈ ℝ*) → ((𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄) ↔ ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
84, 6, 7syl2anc 692 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄) ↔ ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
91, 8mpbid 222 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆))
10 elin 3774 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)))
11 simpl1 1062 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝐷 ∈ (∞Met‘𝑋))
12 simpl2 1063 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑃𝑋)
13 elbl 22103 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1411, 12, 2, 13syl3anc 1323 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
15 simpl3 1064 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → 𝑄𝑋)
16 elbl 22103 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1711, 15, 3, 16syl3anc 1323 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ (𝑄(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
1814, 17anbi12d 746 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆))))
19 anandi 870 . . . . . 6 ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑄𝐷𝑥) < 𝑆)))
2018, 19syl6bbr 278 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆))))
2111adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2212adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑃𝑋)
23 simpr 477 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑥𝑋)
24 xmetcl 22046 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2521, 22, 23, 24syl3anc 1323 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
2615adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑄𝑋)
27 xmetcl 22046 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
2821, 26, 23, 27syl3anc 1323 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑄𝐷𝑥) ∈ ℝ*)
292adantr 481 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
303adantr 481 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → 𝑆 ∈ ℝ*)
31 xlt2add 12033 . . . . . . . 8 ((((𝑃𝐷𝑥) ∈ ℝ* ∧ (𝑄𝐷𝑥) ∈ ℝ*) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
3225, 28, 29, 30, 31syl22anc 1324 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)))
33 xmettri3 22068 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝑄𝑋𝑥𝑋)) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
3421, 22, 26, 23, 33syl13anc 1325 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)))
356adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑃𝐷𝑄) ∈ ℝ*)
3625, 28xaddcld 12074 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ*)
374adantr 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (𝑅 +𝑒 𝑆) ∈ ℝ*)
38 xrlelttr 11931 . . . . . . . . 9 (((𝑃𝐷𝑄) ∈ ℝ* ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ∈ ℝ*) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
3935, 36, 37, 38syl3anc 1323 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑄) ≤ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) ∧ ((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4034, 39mpand 710 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) +𝑒 (𝑄𝐷𝑥)) < (𝑅 +𝑒 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4132, 40syld 47 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4241expimpd 628 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑄𝐷𝑥) < 𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4320, 42sylbid 230 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
4410, 43syl5bi 232 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) → (𝑃𝐷𝑄) < (𝑅 +𝑒 𝑆)))
459, 44mtod 189 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ¬ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)))
4645eq0rdv 3951 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  cin 3554  c0 3891   class class class wbr 4613  cfv 5847  (class class class)co 6604  *cxr 10017   < clt 10018  cle 10019   +𝑒 cxad 11888  ∞Metcxmt 19650  ballcbl 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-xneg 11890  df-xadd 11891  df-psmet 19657  df-xmet 19658  df-bl 19660
This theorem is referenced by:  bl2in  22115  blcld  22220  methaus  22235  metnrmlem3  22572  cntotbnd  33224  heiborlem6  33244
  Copyright terms: Public domain W3C validator