Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenval Structured version   Visualization version   GIF version

Theorem blenval 44638
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenval (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))

Proof of Theorem blenval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-blen 44637 . 2 #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)))
2 eqeq1 2827 . . 3 (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0))
3 fveq2 6672 . . . . . 6 (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁))
43oveq2d 7174 . . . . 5 (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁)))
54fveq2d 6676 . . . 4 (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁))))
65oveq1d 7173 . . 3 (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
72, 6ifbieq2d 4494 . 2 (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
8 elex 3514 . 2 (𝑁𝑉𝑁 ∈ V)
9 1ex 10639 . . . 4 1 ∈ V
10 ovex 7191 . . . 4 ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V
119, 10ifex 4517 . . 3 if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V
1211a1i 11 . 2 (𝑁𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V)
131, 7, 8, 12fvmptd3 6793 1 (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3496  ifcif 4469  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  2c2 11695  cfl 13163  abscabs 14595   logb clogb 25344  #bcblen 44636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-1cn 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-blen 44637
This theorem is referenced by:  blen0  44639  blenn0  44640
  Copyright terms: Public domain W3C validator