Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Structured version   Visualization version   GIF version

Theorem blocni 27788
 Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
Assertion
Ref Expression
blocni (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)

Proof of Theorem blocni
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . 4 𝑈 ∈ NrmCVec
2 eqid 2651 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
3 eqid 2651 . . . . 5 (0vec𝑈) = (0vec𝑈)
42, 3nvzcl 27617 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
51, 4ax-mp 5 . . 3 (0vec𝑈) ∈ (BaseSet‘𝑈)
6 blocni.8 . . . . . . . . . 10 𝐶 = (IndMet‘𝑈)
72, 6imsmet 27674 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
81, 7ax-mp 5 . . . . . . . 8 𝐶 ∈ (Met‘(BaseSet‘𝑈))
9 metxmet 22186 . . . . . . . 8 (𝐶 ∈ (Met‘(BaseSet‘𝑈)) → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
108, 9ax-mp 5 . . . . . . 7 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))
11 blocni.j . . . . . . . 8 𝐽 = (MetOpen‘𝐶)
1211mopntopon 22291 . . . . . . 7 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1310, 12ax-mp 5 . . . . . 6 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))
1413toponunii 20769 . . . . 5 (BaseSet‘𝑈) = 𝐽
1514cncnpi 21130 . . . 4 ((𝑇 ∈ (𝐽 Cn 𝐾) ∧ (0vec𝑈) ∈ (BaseSet‘𝑈)) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
165, 15mpan2 707 . . 3 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
17 blocni.d . . . 4 𝐷 = (IndMet‘𝑊)
18 blocni.k . . . 4 𝐾 = (MetOpen‘𝐷)
19 blocni.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
20 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
21 blocni.w . . . 4 𝑊 ∈ NrmCVec
22 blocni.l . . . 4 𝑇𝐿
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 27787 . . 3 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈))) → 𝑇𝐵)
245, 16, 23sylancr 696 . 2 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇𝐵)
25 eleq1 2718 . . 3 (𝑇 = (𝑈 0op 𝑊) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)))
26 simprr 811 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
27 eqid 2651 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
28 eqid 2651 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
292, 27, 28, 20nmblore 27769 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
301, 21, 29mp3an12 1454 . . . . . . . . . . 11 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
31 eqid 2651 . . . . . . . . . . . . . 14 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
3228, 31, 19nmlnogt0 27780 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
331, 21, 22, 32mp3an 1464 . . . . . . . . . . . 12 (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3433biimpi 206 . . . . . . . . . . 11 (𝑇 ≠ (𝑈 0op 𝑊) → 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3530, 34anim12i 589 . . . . . . . . . 10 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
36 elrp 11872 . . . . . . . . . 10 (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+ ↔ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
3735, 36sylibr 224 . . . . . . . . 9 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3837adantr 480 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3926, 38rpdivcld 11927 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+)
40 simprl 809 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑥 ∈ (BaseSet‘𝑈))
41 metcl 22184 . . . . . . . . . . . 12 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
428, 41mp3an1 1451 . . . . . . . . . . 11 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
4340, 42sylan 487 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
44 simplrr 818 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ+)
4544rpred 11910 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ)
4635ad2antrr 762 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
47 ltmuldiv2 10935 . . . . . . . . . 10 (((𝑥𝐶𝑤) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
4843, 45, 46, 47syl3anc 1366 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
49 id 22 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
5049ad2ant2r 798 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
512, 27, 6, 17, 28, 20, 1, 21blometi 27786 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
52513expa 1284 . . . . . . . . . . 11 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
5350, 52sylan 487 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
542, 27, 19lnof 27738 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
551, 21, 22, 54mp3an 1464 . . . . . . . . . . . . . 14 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)
5655ffvelrni 6398 . . . . . . . . . . . . 13 (𝑥 ∈ (BaseSet‘𝑈) → (𝑇𝑥) ∈ (BaseSet‘𝑊))
5755ffvelrni 6398 . . . . . . . . . . . . 13 (𝑤 ∈ (BaseSet‘𝑈) → (𝑇𝑤) ∈ (BaseSet‘𝑊))
5827, 17imsmet 27674 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmCVec → 𝐷 ∈ (Met‘(BaseSet‘𝑊)))
5921, 58ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (Met‘(BaseSet‘𝑊))
60 metcl 22184 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(BaseSet‘𝑊)) ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6159, 60mp3an1 1451 . . . . . . . . . . . . 13 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6256, 57, 61syl2an 493 . . . . . . . . . . . 12 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6340, 62sylan 487 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
64 remulcl 10059 . . . . . . . . . . . . . . 15 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6530, 42, 64syl2an 493 . . . . . . . . . . . . . 14 ((𝑇𝐵 ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6665anassrs 681 . . . . . . . . . . . . 13 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6766adantllr 755 . . . . . . . . . . . 12 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6867adantlrr 757 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
69 lelttr 10166 . . . . . . . . . . 11 ((((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7063, 68, 45, 69syl3anc 1366 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7153, 70mpand 711 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7248, 71sylbird 250 . . . . . . . 8 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7372ralrimiva 2995 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
74 breq2 4689 . . . . . . . . . 10 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
7574imbi1d 330 . . . . . . . . 9 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦) ↔ ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
7675ralbidv 3015 . . . . . . . 8 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → (∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
7776rspcev 3340 . . . . . . 7 (((𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+ ∧ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7839, 73, 77syl2anc 694 . . . . . 6 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7978ralrimivva 3000 . . . . 5 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
8079, 55jctil 559 . . . 4 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
81 metxmet 22186 . . . . . 6 (𝐷 ∈ (Met‘(BaseSet‘𝑊)) → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
8259, 81ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
8311, 18metcn 22395 . . . . 5 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))))
8410, 82, 83mp2an 708 . . . 4 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
8580, 84sylibr 224 . . 3 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → 𝑇 ∈ (𝐽 Cn 𝐾))
86 eqid 2651 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
872, 86, 310ofval 27770 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)}))
881, 21, 87mp2an 708 . . . . 5 (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)})
8918mopntopon 22291 . . . . . . 7 (𝐷 ∈ (∞Met‘(BaseSet‘𝑊)) → 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)))
9082, 89ax-mp 5 . . . . . 6 𝐾 ∈ (TopOn‘(BaseSet‘𝑊))
9127, 86nvzcl 27617 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
9221, 91ax-mp 5 . . . . . 6 (0vec𝑊) ∈ (BaseSet‘𝑊)
93 cnconst2 21135 . . . . . 6 ((𝐽 ∈ (TopOn‘(BaseSet‘𝑈)) ∧ 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾))
9413, 90, 92, 93mp3an 1464 . . . . 5 ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾)
9588, 94eqeltri 2726 . . . 4 (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)
9695a1i 11 . . 3 (𝑇𝐵 → (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾))
9725, 85, 96pm2.61ne 2908 . 2 (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾))
9824, 97impbii 199 1 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {csn 4210   class class class wbr 4685   × cxp 5141  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  0cc0 9974   · cmul 9979   < clt 10112   ≤ cle 10113   / cdiv 10722  ℝ+crp 11870  ∞Metcxmt 19779  Metcme 19780  MetOpencmopn 19784  TopOnctopon 20763   Cn ccn 21076   CnP ccnp 21077  NrmCVeccnv 27567  BaseSetcba 27569  0veccn0v 27571  IndMetcims 27574   LnOp clno 27723   normOpOLD cnmoo 27724   BLnOp cblo 27725   0op c0o 27726 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-cnp 21080  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-lno 27727  df-nmoo 27728  df-blo 27729  df-0o 27730 This theorem is referenced by:  lnocni  27789  blocn  27790
 Copyright terms: Public domain W3C validator