MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Structured version   Visualization version   GIF version

Theorem blocni 26850
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
Assertion
Ref Expression
blocni (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)

Proof of Theorem blocni
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . 4 𝑈 ∈ NrmCVec
2 eqid 2609 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
3 eqid 2609 . . . . 5 (0vec𝑈) = (0vec𝑈)
42, 3nvzcl 26659 . . . 4 (𝑈 ∈ NrmCVec → (0vec𝑈) ∈ (BaseSet‘𝑈))
51, 4ax-mp 5 . . 3 (0vec𝑈) ∈ (BaseSet‘𝑈)
6 blocni.8 . . . . . . . . . 10 𝐶 = (IndMet‘𝑈)
72, 6imsmet 26727 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
81, 7ax-mp 5 . . . . . . . 8 𝐶 ∈ (Met‘(BaseSet‘𝑈))
9 metxmet 21890 . . . . . . . 8 (𝐶 ∈ (Met‘(BaseSet‘𝑈)) → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
108, 9ax-mp 5 . . . . . . 7 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))
11 blocni.j . . . . . . . 8 𝐽 = (MetOpen‘𝐶)
1211mopntopon 21995 . . . . . . 7 (𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) → 𝐽 ∈ (TopOn‘(BaseSet‘𝑈)))
1310, 12ax-mp 5 . . . . . 6 𝐽 ∈ (TopOn‘(BaseSet‘𝑈))
1413toponunii 20489 . . . . 5 (BaseSet‘𝑈) = 𝐽
1514cncnpi 20834 . . . 4 ((𝑇 ∈ (𝐽 Cn 𝐾) ∧ (0vec𝑈) ∈ (BaseSet‘𝑈)) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
165, 15mpan2 702 . . 3 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈)))
17 blocni.d . . . 4 𝐷 = (IndMet‘𝑊)
18 blocni.k . . . 4 𝐾 = (MetOpen‘𝐷)
19 blocni.4 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
20 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
21 blocni.w . . . 4 𝑊 ∈ NrmCVec
22 blocni.l . . . 4 𝑇𝐿
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 26849 . . 3 (((0vec𝑈) ∈ (BaseSet‘𝑈) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘(0vec𝑈))) → 𝑇𝐵)
245, 16, 23sylancr 693 . 2 (𝑇 ∈ (𝐽 Cn 𝐾) → 𝑇𝐵)
25 eleq1 2675 . . 3 (𝑇 = (𝑈 0op 𝑊) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)))
26 simprr 791 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
27 eqid 2609 . . . . . . . . . . . . 13 (BaseSet‘𝑊) = (BaseSet‘𝑊)
28 eqid 2609 . . . . . . . . . . . . 13 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
292, 27, 28, 20nmblore 26831 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
301, 21, 29mp3an12 1405 . . . . . . . . . . 11 (𝑇𝐵 → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ)
31 eqid 2609 . . . . . . . . . . . . . 14 (𝑈 0op 𝑊) = (𝑈 0op 𝑊)
3228, 31, 19nmlnogt0 26842 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
331, 21, 22, 32mp3an 1415 . . . . . . . . . . . 12 (𝑇 ≠ (𝑈 0op 𝑊) ↔ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3433biimpi 204 . . . . . . . . . . 11 (𝑇 ≠ (𝑈 0op 𝑊) → 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))
3530, 34anim12i 587 . . . . . . . . . 10 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
36 elrp 11666 . . . . . . . . . 10 (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+ ↔ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
3735, 36sylibr 222 . . . . . . . . 9 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3837adantr 479 . . . . . . . 8 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ+)
3926, 38rpdivcld 11721 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+)
40 simprl 789 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → 𝑥 ∈ (BaseSet‘𝑈))
41 metcl 21888 . . . . . . . . . . . 12 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
428, 41mp3an1 1402 . . . . . . . . . . 11 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
4340, 42sylan 486 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑤) ∈ ℝ)
44 simplrr 796 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ+)
4544rpred 11704 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → 𝑦 ∈ ℝ)
4635ad2antrr 757 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇)))
47 ltmuldiv2 10746 . . . . . . . . . 10 (((𝑥𝐶𝑤) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ 0 < ((𝑈 normOpOLD 𝑊)‘𝑇))) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
4843, 45, 46, 47syl3anc 1317 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
49 id 22 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
5049ad2ant2r 778 . . . . . . . . . . 11 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → (𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)))
512, 27, 6, 17, 28, 20, 1, 21blometi 26848 . . . . . . . . . . . 12 ((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
52513expa 1256 . . . . . . . . . . 11 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
5350, 52sylan 486 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)))
542, 27, 19lnof 26800 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
551, 21, 22, 54mp3an 1415 . . . . . . . . . . . . . 14 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)
5655ffvelrni 6251 . . . . . . . . . . . . 13 (𝑥 ∈ (BaseSet‘𝑈) → (𝑇𝑥) ∈ (BaseSet‘𝑊))
5755ffvelrni 6251 . . . . . . . . . . . . 13 (𝑤 ∈ (BaseSet‘𝑈) → (𝑇𝑤) ∈ (BaseSet‘𝑊))
5827, 17imsmet 26727 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmCVec → 𝐷 ∈ (Met‘(BaseSet‘𝑊)))
5921, 58ax-mp 5 . . . . . . . . . . . . . 14 𝐷 ∈ (Met‘(BaseSet‘𝑊))
60 metcl 21888 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘(BaseSet‘𝑊)) ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6159, 60mp3an1 1402 . . . . . . . . . . . . 13 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑤) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6256, 57, 61syl2an 492 . . . . . . . . . . . 12 ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
6340, 62sylan 486 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ)
64 remulcl 9877 . . . . . . . . . . . . . . 15 ((((𝑈 normOpOLD 𝑊)‘𝑇) ∈ ℝ ∧ (𝑥𝐶𝑤) ∈ ℝ) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6530, 42, 64syl2an 492 . . . . . . . . . . . . . 14 ((𝑇𝐵 ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6665anassrs 677 . . . . . . . . . . . . 13 (((𝑇𝐵𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6766adantllr 750 . . . . . . . . . . . 12 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
6867adantlrr 752 . . . . . . . . . . 11 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ)
69 lelttr 9979 . . . . . . . . . . 11 ((((𝑇𝑥)𝐷(𝑇𝑤)) ∈ ℝ ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7063, 68, 45, 69syl3anc 1317 . . . . . . . . . 10 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑇𝑥)𝐷(𝑇𝑤)) ≤ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) ∧ (((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7153, 70mpand 706 . . . . . . . . 9 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((((𝑈 normOpOLD 𝑊)‘𝑇) · (𝑥𝐶𝑤)) < 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7248, 71sylbird 248 . . . . . . . 8 ((((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7372ralrimiva 2948 . . . . . . 7 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
74 breq2 4581 . . . . . . . . . 10 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇))))
7574imbi1d 329 . . . . . . . . 9 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦) ↔ ((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
7675ralbidv 2968 . . . . . . . 8 (𝑧 = (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → (∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
7776rspcev 3281 . . . . . . 7 (((𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) ∈ ℝ+ ∧ ∀𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < (𝑦 / ((𝑈 normOpOLD 𝑊)‘𝑇)) → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7839, 73, 77syl2anc 690 . . . . . 6 (((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
7978ralrimivva 2953 . . . . 5 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))
8079, 55jctil 557 . . . 4 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
81 metxmet 21890 . . . . . 6 (𝐷 ∈ (Met‘(BaseSet‘𝑊)) → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
8259, 81ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
8311, 18metcn 22099 . . . . 5 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦))))
8410, 82, 83mp2an 703 . . . 4 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ (𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑤) < 𝑧 → ((𝑇𝑥)𝐷(𝑇𝑤)) < 𝑦)))
8580, 84sylibr 222 . . 3 ((𝑇𝐵𝑇 ≠ (𝑈 0op 𝑊)) → 𝑇 ∈ (𝐽 Cn 𝐾))
86 eqid 2609 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
872, 86, 310ofval 26832 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)}))
881, 21, 87mp2an 703 . . . . 5 (𝑈 0op 𝑊) = ((BaseSet‘𝑈) × {(0vec𝑊)})
8918mopntopon 21995 . . . . . . 7 (𝐷 ∈ (∞Met‘(BaseSet‘𝑊)) → 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)))
9082, 89ax-mp 5 . . . . . 6 𝐾 ∈ (TopOn‘(BaseSet‘𝑊))
9127, 86nvzcl 26659 . . . . . . 7 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
9221, 91ax-mp 5 . . . . . 6 (0vec𝑊) ∈ (BaseSet‘𝑊)
93 cnconst2 20839 . . . . . 6 ((𝐽 ∈ (TopOn‘(BaseSet‘𝑈)) ∧ 𝐾 ∈ (TopOn‘(BaseSet‘𝑊)) ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾))
9413, 90, 92, 93mp3an 1415 . . . . 5 ((BaseSet‘𝑈) × {(0vec𝑊)}) ∈ (𝐽 Cn 𝐾)
9588, 94eqeltri 2683 . . . 4 (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾)
9695a1i 11 . . 3 (𝑇𝐵 → (𝑈 0op 𝑊) ∈ (𝐽 Cn 𝐾))
9725, 85, 96pm2.61ne 2866 . 2 (𝑇𝐵𝑇 ∈ (𝐽 Cn 𝐾))
9824, 97impbii 197 1 (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  {csn 4124   class class class wbr 4577   × cxp 5026  wf 5786  cfv 5790  (class class class)co 6527  cr 9791  0cc0 9792   · cmul 9797   < clt 9930  cle 9931   / cdiv 10533  +crp 11664  ∞Metcxmt 19498  Metcme 19499  MetOpencmopn 19503  TopOnctopon 20460   Cn ccn 20780   CnP ccnp 20781  NrmCVeccnv 26607  BaseSetcba 26609  0veccn0v 26611  IndMetcims 26614   LnOp clno 26785   normOpOLD cnmoo 26786   BLnOp cblo 26787   0op c0o 26788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-topgen 15873  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-top 20463  df-bases 20464  df-topon 20465  df-cn 20783  df-cnp 20784  df-grpo 26497  df-gid 26498  df-ginv 26499  df-gdiv 26500  df-ablo 26552  df-vc 26567  df-nv 26615  df-va 26618  df-ba 26619  df-sm 26620  df-0v 26621  df-vs 26622  df-nmcv 26623  df-ims 26624  df-lno 26789  df-nmoo 26790  df-blo 26791  df-0o 26792
This theorem is referenced by:  lnocni  26851  blocn  26852
  Copyright terms: Public domain W3C validator