MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocnilem Structured version   Visualization version   GIF version

Theorem blocnilem 28584
Description: Lemma for blocni 28585 and lnocni 28586. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
blocnilem.1 𝑋 = (BaseSet‘𝑈)
Assertion
Ref Expression
blocnilem ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)

Proof of Theorem blocnilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . . . 6 𝑈 ∈ NrmCVec
2 blocnilem.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 blocni.8 . . . . . . 7 𝐶 = (IndMet‘𝑈)
42, 3imsxmet 28472 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
51, 4ax-mp 5 . . . . 5 𝐶 ∈ (∞Met‘𝑋)
6 blocni.w . . . . . 6 𝑊 ∈ NrmCVec
7 eqid 2824 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 blocni.d . . . . . . 7 𝐷 = (IndMet‘𝑊)
97, 8imsxmet 28472 . . . . . 6 (𝑊 ∈ NrmCVec → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
106, 9ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
11 1rp 12396 . . . . . 6 1 ∈ ℝ+
12 blocni.j . . . . . . 7 𝐽 = (MetOpen‘𝐶)
13 blocni.k . . . . . . 7 𝐾 = (MetOpen‘𝐷)
1412, 13metcnpi3 23159 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 1 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
1511, 14mpanr2 702 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
165, 10, 15mpanl12 700 . . . 4 (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
17 rpreccl 12418 . . . . . . . 8 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
1817rpred 12434 . . . . . . 7 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ)
1918ad2antlr 725 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → (1 / 𝑦) ∈ ℝ)
20 eqid 2824 . . . . . . . . . . . . . . 15 ( −𝑣𝑈) = ( −𝑣𝑈)
21 eqid 2824 . . . . . . . . . . . . . . 15 (normCV𝑈) = (normCV𝑈)
222, 20, 21, 3imsdval 28466 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
231, 22mp3an1 1444 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
2423breq1d 5079 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → ((𝑥𝐶𝑃) ≤ 𝑦 ↔ ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦))
25 blocni.l . . . . . . . . . . . . . . . . 17 𝑇𝐿
26 blocni.4 . . . . . . . . . . . . . . . . . 18 𝐿 = (𝑈 LnOp 𝑊)
272, 7, 26lnof 28535 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
281, 6, 25, 27mp3an 1457 . . . . . . . . . . . . . . . 16 𝑇:𝑋⟶(BaseSet‘𝑊)
2928ffvelrni 6853 . . . . . . . . . . . . . . 15 (𝑥𝑋 → (𝑇𝑥) ∈ (BaseSet‘𝑊))
3028ffvelrni 6853 . . . . . . . . . . . . . . 15 (𝑃𝑋 → (𝑇𝑃) ∈ (BaseSet‘𝑊))
31 eqid 2824 . . . . . . . . . . . . . . . . 17 ( −𝑣𝑊) = ( −𝑣𝑊)
32 eqid 2824 . . . . . . . . . . . . . . . . 17 (normCV𝑊) = (normCV𝑊)
337, 31, 32, 8imsdval 28466 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
346, 33mp3an1 1444 . . . . . . . . . . . . . . 15 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
3529, 30, 34syl2an 597 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
361, 6, 253pm3.2i 1335 . . . . . . . . . . . . . . . 16 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
372, 20, 31, 26lnosub 28539 . . . . . . . . . . . . . . . 16 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝑥𝑋𝑃𝑋)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3836, 37mpan 688 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑃𝑋) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3938fveq2d 6677 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
4035, 39eqtr4d 2862 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))))
4140breq1d 5079 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → (((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1))
4224, 41imbi12d 347 . . . . . . . . . . 11 ((𝑥𝑋𝑃𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4342ancoms 461 . . . . . . . . . 10 ((𝑃𝑋𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4443adantlr 713 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4544ralbidva 3199 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
46 2fveq3 6678 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((normCV𝑊)‘(𝑇𝑧)) = ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
47 fveq2 6673 . . . . . . . . . . . . 13 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
4847oveq2d 7175 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
4946, 48breq12d 5082 . . . . . . . . . . 11 (𝑧 = (0vec𝑈) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈)))))
501a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑈 ∈ NrmCVec)
51 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑃𝑋)
52 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑋𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
532, 21nvcl 28441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
541, 53mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
5554adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ)
56 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0vec𝑈) = (0vec𝑈)
572, 56, 21nvgt0 28454 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
581, 57mpan 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑋 → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
5958biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → 0 < ((normCV𝑈)‘𝑧))
6055, 59elrpd 12431 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ+)
61 rpdivcl 12417 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6252, 60, 61syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6362rpcnd 12436 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ)
64 simprl 769 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑧𝑋)
65 eqid 2824 . . . . . . . . . . . . . . . . . . . . . 22 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
662, 65nvscl 28406 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ NrmCVec ∧ (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
6750, 63, 64, 66syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
68 eqid 2824 . . . . . . . . . . . . . . . . . . . . 21 ( +𝑣𝑈) = ( +𝑣𝑈)
692, 68, 20nvpncan2 28433 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7050, 51, 67, 69syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7170fveq2d 6677 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
7262rprege0d 12441 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))))
732, 65, 21nvsge0 28444 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ 𝑧𝑋) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
7450, 72, 64, 73syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
75 rpcn 12402 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7675ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ∈ ℂ)
7754ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℝ)
7877recnd 10672 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℂ)
792, 56, 21nvz 28449 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
801, 79mpan 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑋 → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
8180necon3bid 3063 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑋 → (((normCV𝑈)‘𝑧) ≠ 0 ↔ 𝑧 ≠ (0vec𝑈)))
8281biimpar 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ≠ 0)
8382adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ≠ 0)
8476, 78, 83divcan1d 11420 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)) = 𝑦)
8571, 74, 843eqtrd 2863 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = 𝑦)
86 rpre 12400 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
8786leidd 11209 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ+𝑦𝑦)
8887ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦𝑦)
8985, 88eqbrtrd 5091 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦)
902, 68nvgcl 28400 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
9150, 51, 67, 90syl3anc 1367 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
92 fvoveq1 7182 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9392breq1d 5079 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 ↔ ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦))
94 fvoveq1 7182 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9594fveq2d 6677 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))))
9695breq1d 5079 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
9793, 96imbi12d 347 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) ↔ (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9897rspcv 3621 . . . . . . . . . . . . . . . . 17 ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋 → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
9991, 98syl 17 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
10089, 99mpid 44 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
10128ffvelrni 6853 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1027, 32nvcl 28441 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
1036, 101, 102sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝑧𝑋 → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
104103ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
105 1red 10645 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 1 ∈ ℝ)
106104, 105, 62lemuldiv2d 12484 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
10770fveq2d 6677 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
108 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . 23 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
1092, 65, 108, 26lnomul 28540 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋)) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11036, 109mpan 688 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11163, 64, 110syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
112107, 111eqtrd 2859 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
113112fveq2d 6677 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))))
1146a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑊 ∈ NrmCVec)
115101ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1167, 108, 32nvsge0 28444 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
117114, 72, 115, 116syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
118113, 117eqtrd 2859 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
119118breq1d 5079 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1))
120 rpcnne0 12410 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
121 rpcnne0 12410 . . . . . . . . . . . . . . . . . . . 20 (((normCV𝑈)‘𝑧) ∈ ℝ+ → (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0))
122 recdiv 11349 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0)) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
123120, 121, 122syl2an 597 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
12452, 60, 123syl2an 597 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
125 rpne0 12408 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ≠ 0)
126125ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ≠ 0)
12778, 76, 126divrec2d 11423 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑈)‘𝑧) / 𝑦) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
128124, 127eqtr2d 2860 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = (1 / (𝑦 / ((normCV𝑈)‘𝑧))))
129128breq2d 5081 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
130106, 119, 1293bitr4d 313 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
131100, 130sylibd 241 . . . . . . . . . . . . . 14 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
132131anassrs 470 . . . . . . . . . . . . 13 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
133132imp 409 . . . . . . . . . . . 12 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
134133an32s 650 . . . . . . . . . . 11 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) ∧ 𝑧 ≠ (0vec𝑈)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
135 eqid 2824 . . . . . . . . . . . . . . . . . 18 (0vec𝑊) = (0vec𝑊)
1362, 7, 56, 135, 26lno0 28536 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
1371, 6, 25, 136mp3an 1457 . . . . . . . . . . . . . . . 16 (𝑇‘(0vec𝑈)) = (0vec𝑊)
138137fveq2i 6676 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = ((normCV𝑊)‘(0vec𝑊))
139135, 32nvz0 28448 . . . . . . . . . . . . . . . 16 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
1406, 139ax-mp 5 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(0vec𝑊)) = 0
141138, 140eqtri 2847 . . . . . . . . . . . . . 14 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = 0
142 0le0 11741 . . . . . . . . . . . . . 14 0 ≤ 0
143141, 142eqbrtri 5090 . . . . . . . . . . . . 13 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ 0
14417rpcnd 12436 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℂ)
14556, 21nvz0 28448 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
1461, 145ax-mp 5 . . . . . . . . . . . . . . . 16 ((normCV𝑈)‘(0vec𝑈)) = 0
147146oveq2i 7170 . . . . . . . . . . . . . . 15 ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = ((1 / 𝑦) · 0)
148 mul01 10822 . . . . . . . . . . . . . . 15 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · 0) = 0)
149147, 148syl5eq 2871 . . . . . . . . . . . . . 14 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
150144, 149syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
151143, 150breqtrrid 5107 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
152151ad3antlr 729 . . . . . . . . . . 11 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
15349, 134, 152pm2.61ne 3105 . . . . . . . . . 10 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
154153ex 415 . . . . . . . . 9 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
155154ralrimdva 3192 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
15645, 155sylbid 242 . . . . . . 7 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
157156imp 409 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
158 oveq1 7166 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (𝑥 · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
159158breq2d 5081 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
160159ralbidv 3200 . . . . . . 7 (𝑥 = (1 / 𝑦) → (∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
161160rspcev 3626 . . . . . 6 (((1 / 𝑦) ∈ ℝ ∧ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
16219, 157, 161syl2anc 586 . . . . 5 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
163162rexlimdva2 3290 . . . 4 (𝑃𝑋 → (∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16416, 163syl5 34 . . 3 (𝑃𝑋 → (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
165164imp 409 . 2 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
166 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
1672, 21, 32, 26, 166, 1, 6isblo3i 28581 . . 3 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16825, 167mpbiran 707 . 2 (𝑇𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
169165, 168sylibr 236 1 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142   class class class wbr 5069  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   · cmul 10545   < clt 10678  cle 10679   / cdiv 11300  +crp 12392  ∞Metcxmet 20533  MetOpencmopn 20538   CnP ccnp 21836  NrmCVeccnv 28364   +𝑣 cpv 28365  BaseSetcba 28366   ·𝑠OLD cns 28367  0veccn0v 28368  𝑣 cnsb 28369  normCVcnmcv 28370  IndMetcims 28371   LnOp clno 28520   BLnOp cblo 28522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cnp 21839  df-grpo 28273  df-gid 28274  df-ginv 28275  df-gdiv 28276  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-vs 28379  df-nmcv 28380  df-ims 28381  df-lno 28524  df-nmoo 28525  df-blo 28526  df-0o 28527
This theorem is referenced by:  blocni  28585  lnocni  28586
  Copyright terms: Public domain W3C validator