MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocnilem Structured version   Visualization version   GIF version

Theorem blocnilem 27526
Description: Lemma for blocni 27527 and lnocni 27528. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8 𝐶 = (IndMet‘𝑈)
blocni.d 𝐷 = (IndMet‘𝑊)
blocni.j 𝐽 = (MetOpen‘𝐶)
blocni.k 𝐾 = (MetOpen‘𝐷)
blocni.4 𝐿 = (𝑈 LnOp 𝑊)
blocni.5 𝐵 = (𝑈 BLnOp 𝑊)
blocni.u 𝑈 ∈ NrmCVec
blocni.w 𝑊 ∈ NrmCVec
blocni.l 𝑇𝐿
blocnilem.1 𝑋 = (BaseSet‘𝑈)
Assertion
Ref Expression
blocnilem ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)

Proof of Theorem blocnilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . . . 6 𝑈 ∈ NrmCVec
2 blocnilem.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
3 blocni.8 . . . . . . 7 𝐶 = (IndMet‘𝑈)
42, 3imsxmet 27414 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘𝑋))
51, 4ax-mp 5 . . . . 5 𝐶 ∈ (∞Met‘𝑋)
6 blocni.w . . . . . 6 𝑊 ∈ NrmCVec
7 eqid 2621 . . . . . . 7 (BaseSet‘𝑊) = (BaseSet‘𝑊)
8 blocni.d . . . . . . 7 𝐷 = (IndMet‘𝑊)
97, 8imsxmet 27414 . . . . . 6 (𝑊 ∈ NrmCVec → 𝐷 ∈ (∞Met‘(BaseSet‘𝑊)))
106, 9ax-mp 5 . . . . 5 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))
11 1rp 11787 . . . . . 6 1 ∈ ℝ+
12 blocni.j . . . . . . 7 𝐽 = (MetOpen‘𝐶)
13 blocni.k . . . . . . 7 𝐾 = (MetOpen‘𝐷)
1412, 13metcnpi3 22270 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 1 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
1511, 14mpanr2 719 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘(BaseSet‘𝑊))) ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
165, 10, 15mpanl12 717 . . . 4 (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1))
17 rpreccl 11808 . . . . . . . . 9 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
1817rpred 11823 . . . . . . . 8 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ)
1918ad2antlr 762 . . . . . . 7 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → (1 / 𝑦) ∈ ℝ)
20 eqid 2621 . . . . . . . . . . . . . . . 16 ( −𝑣𝑈) = ( −𝑣𝑈)
21 eqid 2621 . . . . . . . . . . . . . . . 16 (normCV𝑈) = (normCV𝑈)
222, 20, 21, 3imsdval 27408 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
231, 22mp3an1 1408 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → (𝑥𝐶𝑃) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)))
2423breq1d 4628 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → ((𝑥𝐶𝑃) ≤ 𝑦 ↔ ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦))
25 blocni.l . . . . . . . . . . . . . . . . . 18 𝑇𝐿
26 blocni.4 . . . . . . . . . . . . . . . . . . 19 𝐿 = (𝑈 LnOp 𝑊)
272, 7, 26lnof 27477 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
281, 6, 25, 27mp3an 1421 . . . . . . . . . . . . . . . . 17 𝑇:𝑋⟶(BaseSet‘𝑊)
2928ffvelrni 6319 . . . . . . . . . . . . . . . 16 (𝑥𝑋 → (𝑇𝑥) ∈ (BaseSet‘𝑊))
3028ffvelrni 6319 . . . . . . . . . . . . . . . 16 (𝑃𝑋 → (𝑇𝑃) ∈ (BaseSet‘𝑊))
31 eqid 2621 . . . . . . . . . . . . . . . . . 18 ( −𝑣𝑊) = ( −𝑣𝑊)
32 eqid 2621 . . . . . . . . . . . . . . . . . 18 (normCV𝑊) = (normCV𝑊)
337, 31, 32, 8imsdval 27408 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
346, 33mp3an1 1408 . . . . . . . . . . . . . . . 16 (((𝑇𝑥) ∈ (BaseSet‘𝑊) ∧ (𝑇𝑃) ∈ (BaseSet‘𝑊)) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
3529, 30, 34syl2an 494 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
361, 6, 253pm3.2i 1237 . . . . . . . . . . . . . . . . 17 (𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿)
372, 20, 31, 26lnosub 27481 . . . . . . . . . . . . . . . . 17 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝑥𝑋𝑃𝑋)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3836, 37mpan 705 . . . . . . . . . . . . . . . 16 ((𝑥𝑋𝑃𝑋) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = ((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃)))
3938fveq2d 6157 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑃𝑋) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑇𝑥)( −𝑣𝑊)(𝑇𝑃))))
4035, 39eqtr4d 2658 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑃𝑋) → ((𝑇𝑥)𝐷(𝑇𝑃)) = ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))))
4140breq1d 4628 . . . . . . . . . . . . 13 ((𝑥𝑋𝑃𝑋) → (((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1))
4224, 41imbi12d 334 . . . . . . . . . . . 12 ((𝑥𝑋𝑃𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4342ancoms 469 . . . . . . . . . . 11 ((𝑃𝑋𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4443adantlr 750 . . . . . . . . . 10 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
4544ralbidva 2980 . . . . . . . . 9 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) ↔ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)))
46 fveq2 6153 . . . . . . . . . . . . . 14 (𝑧 = (0vec𝑈) → (𝑇𝑧) = (𝑇‘(0vec𝑈)))
4746fveq2d 6157 . . . . . . . . . . . . 13 (𝑧 = (0vec𝑈) → ((normCV𝑊)‘(𝑇𝑧)) = ((normCV𝑊)‘(𝑇‘(0vec𝑈))))
48 fveq2 6153 . . . . . . . . . . . . . 14 (𝑧 = (0vec𝑈) → ((normCV𝑈)‘𝑧) = ((normCV𝑈)‘(0vec𝑈)))
4948oveq2d 6626 . . . . . . . . . . . . 13 (𝑧 = (0vec𝑈) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
5047, 49breq12d 4631 . . . . . . . . . . . 12 (𝑧 = (0vec𝑈) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈)))))
511a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑈 ∈ NrmCVec)
52 simpll 789 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑃𝑋)
53 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃𝑋𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
542, 21nvcl 27383 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((normCV𝑈)‘𝑧) ∈ ℝ)
551, 54mpan 705 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑋 → ((normCV𝑈)‘𝑧) ∈ ℝ)
5655adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ)
57 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0vec𝑈) = (0vec𝑈)
582, 57, 21nvgt0 27396 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
591, 58mpan 705 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑋 → (𝑧 ≠ (0vec𝑈) ↔ 0 < ((normCV𝑈)‘𝑧)))
6059biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → 0 < ((normCV𝑈)‘𝑧))
6156, 60elrpd 11820 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ∈ ℝ+)
62 rpdivcl 11807 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6353, 61, 62syl2an 494 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ+)
6463rpcnd 11825 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ)
65 simprl 793 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑧𝑋)
66 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . 23 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
672, 66nvscl 27348 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 ∈ NrmCVec ∧ (𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
6851, 64, 65, 67syl3anc 1323 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋)
69 eqid 2621 . . . . . . . . . . . . . . . . . . . . . 22 ( +𝑣𝑈) = ( +𝑣𝑈)
702, 69, 20nvpncan2 27375 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7151, 52, 68, 70syl3anc 1323 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))
7271fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
7363rprege0d 11830 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))))
742, 66, 21nvsge0 27386 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ 𝑧𝑋) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
7551, 73, 65, 74syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)))
76 rpcn 11792 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7776ad2antlr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ∈ ℂ)
7855ad2antrl 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℝ)
7978recnd 10019 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ∈ ℂ)
802, 57, 21nvz 27391 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
811, 80mpan 705 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑋 → (((normCV𝑈)‘𝑧) = 0 ↔ 𝑧 = (0vec𝑈)))
8281necon3bid 2834 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑋 → (((normCV𝑈)‘𝑧) ≠ 0 ↔ 𝑧 ≠ (0vec𝑈)))
8382biimpar 502 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧𝑋𝑧 ≠ (0vec𝑈)) → ((normCV𝑈)‘𝑧) ≠ 0)
8483adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘𝑧) ≠ 0)
8577, 79, 84divcan1d 10753 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑈)‘𝑧)) = 𝑦)
8672, 75, 853eqtrd 2659 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = 𝑦)
87 rpre 11790 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
8887leidd 10545 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ+𝑦𝑦)
8988ad2antlr 762 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦𝑦)
9086, 89eqbrtrd 4640 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦)
912, 69nvgcl 27342 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋 ∧ ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧) ∈ 𝑋) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
9251, 52, 68, 91syl3anc 1323 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋)
93 oveq1 6617 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (𝑥( −𝑣𝑈)𝑃) = ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))
9493fveq2d 6157 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) = ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9594breq1d 4628 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 ↔ ((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦))
9693fveq2d 6157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (𝑇‘(𝑥( −𝑣𝑈)𝑃)) = (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)))
9796fveq2d 6157 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))))
9897breq1d 4628 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → (((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
9995, 98imbi12d 334 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) → ((((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) ↔ (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
10099rspcv 3294 . . . . . . . . . . . . . . . . . 18 ((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) ∈ 𝑋 → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
10192, 100syl 17 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → (((normCV𝑈)‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1)))
10290, 101mpid 44 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1))
10328ffvelrni 6319 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑋 → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1047, 32nvcl 27383 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
1056, 103, 104sylancr 694 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
106105ad2antrl 763 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇𝑧)) ∈ ℝ)
107 1red 10006 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 1 ∈ ℝ)
108106, 107, 63lemuldiv2d 11873 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
10971fveq2d 6157 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)))
110 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
1112, 66, 110, 26lnomul 27482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋)) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11236, 111mpan 705 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℂ ∧ 𝑧𝑋) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
11364, 65, 112syl2anc 692 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
114109, 113eqtrd 2655 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃)) = ((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧)))
115114fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))))
1166a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑊 ∈ NrmCVec)
117103ad2antrl 763 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (𝑇𝑧) ∈ (BaseSet‘𝑊))
1187, 110, 32nvsge0 27386 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ NrmCVec ∧ ((𝑦 / ((normCV𝑈)‘𝑧)) ∈ ℝ ∧ 0 ≤ (𝑦 / ((normCV𝑈)‘𝑧))) ∧ (𝑇𝑧) ∈ (BaseSet‘𝑊)) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
119116, 73, 117, 118syl3anc 1323 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑊)(𝑇𝑧))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
120115, 119eqtrd 2655 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) = ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))))
121120breq1d 4628 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((𝑦 / ((normCV𝑈)‘𝑧)) · ((normCV𝑊)‘(𝑇𝑧))) ≤ 1))
122 rpcnne0 11801 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ+ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
123 rpcnne0 11801 . . . . . . . . . . . . . . . . . . . . 21 (((normCV𝑈)‘𝑧) ∈ ℝ+ → (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0))
124 recdiv 10682 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (((normCV𝑈)‘𝑧) ∈ ℂ ∧ ((normCV𝑈)‘𝑧) ≠ 0)) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
125122, 123, 124syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ+ ∧ ((normCV𝑈)‘𝑧) ∈ ℝ+) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
12653, 61, 125syl2an 494 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (1 / (𝑦 / ((normCV𝑈)‘𝑧))) = (((normCV𝑈)‘𝑧) / 𝑦))
127 rpne0 11799 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℝ+𝑦 ≠ 0)
128127ad2antlr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → 𝑦 ≠ 0)
12979, 77, 128divrec2d 10756 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑈)‘𝑧) / 𝑦) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
130126, 129eqtr2d 2656 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) = (1 / (𝑦 / ((normCV𝑈)‘𝑧))))
131130breq2d 4630 . . . . . . . . . . . . . . . . 17 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ (1 / (𝑦 / ((normCV𝑈)‘𝑧)))))
132108, 121, 1313bitr4d 300 . . . . . . . . . . . . . . . 16 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (((normCV𝑊)‘(𝑇‘((𝑃( +𝑣𝑈)((𝑦 / ((normCV𝑈)‘𝑧))( ·𝑠OLD𝑈)𝑧))( −𝑣𝑈)𝑃))) ≤ 1 ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
133102, 132sylibd 229 . . . . . . . . . . . . . . 15 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ (𝑧𝑋𝑧 ≠ (0vec𝑈))) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
134133anassrs 679 . . . . . . . . . . . . . 14 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
135134imp 445 . . . . . . . . . . . . 13 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ 𝑧 ≠ (0vec𝑈)) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
136135an32s 845 . . . . . . . . . . . 12 (((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) ∧ 𝑧 ≠ (0vec𝑈)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
137 eqid 2621 . . . . . . . . . . . . . . . . . . 19 (0vec𝑊) = (0vec𝑊)
1382, 7, 57, 137, 26lno0 27478 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇‘(0vec𝑈)) = (0vec𝑊))
1391, 6, 25, 138mp3an 1421 . . . . . . . . . . . . . . . . 17 (𝑇‘(0vec𝑈)) = (0vec𝑊)
140139fveq2i 6156 . . . . . . . . . . . . . . . 16 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = ((normCV𝑊)‘(0vec𝑊))
141137, 32nvz0 27390 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ NrmCVec → ((normCV𝑊)‘(0vec𝑊)) = 0)
1426, 141ax-mp 5 . . . . . . . . . . . . . . . 16 ((normCV𝑊)‘(0vec𝑊)) = 0
143140, 142eqtri 2643 . . . . . . . . . . . . . . 15 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) = 0
144 0le0 11061 . . . . . . . . . . . . . . 15 0 ≤ 0
145143, 144eqbrtri 4639 . . . . . . . . . . . . . 14 ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ 0
14617rpcnd 11825 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℂ)
14757, 21nvz0 27390 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ NrmCVec → ((normCV𝑈)‘(0vec𝑈)) = 0)
1481, 147ax-mp 5 . . . . . . . . . . . . . . . . 17 ((normCV𝑈)‘(0vec𝑈)) = 0
149148oveq2i 6621 . . . . . . . . . . . . . . . 16 ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = ((1 / 𝑦) · 0)
150 mul01 10166 . . . . . . . . . . . . . . . 16 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · 0) = 0)
151149, 150syl5eq 2667 . . . . . . . . . . . . . . 15 ((1 / 𝑦) ∈ ℂ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
152146, 151syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))) = 0)
153145, 152syl5breqr 4656 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ+ → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
154153ad3antlr 766 . . . . . . . . . . . 12 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇‘(0vec𝑈))) ≤ ((1 / 𝑦) · ((normCV𝑈)‘(0vec𝑈))))
15550, 136, 154pm2.61ne 2875 . . . . . . . . . . 11 ((((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) ∧ ∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1)) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
156155ex 450 . . . . . . . . . 10 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ 𝑧𝑋) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
157156ralrimdva 2964 . . . . . . . . 9 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑃)) ≤ 𝑦 → ((normCV𝑊)‘(𝑇‘(𝑥( −𝑣𝑈)𝑃))) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
15845, 157sylbid 230 . . . . . . . 8 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
159158imp 445 . . . . . . 7 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
160 oveq1 6617 . . . . . . . . . 10 (𝑥 = (1 / 𝑦) → (𝑥 · ((normCV𝑈)‘𝑧)) = ((1 / 𝑦) · ((normCV𝑈)‘𝑧)))
161160breq2d 4630 . . . . . . . . 9 (𝑥 = (1 / 𝑦) → (((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
162161ralbidv 2981 . . . . . . . 8 (𝑥 = (1 / 𝑦) → (∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)) ↔ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))))
163162rspcev 3298 . . . . . . 7 (((1 / 𝑦) ∈ ℝ ∧ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ ((1 / 𝑦) · ((normCV𝑈)‘𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
16419, 159, 163syl2anc 692 . . . . . 6 (((𝑃𝑋𝑦 ∈ ℝ+) ∧ ∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
165164ex 450 . . . . 5 ((𝑃𝑋𝑦 ∈ ℝ+) → (∀𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
166165rexlimdva 3025 . . . 4 (𝑃𝑋 → (∃𝑦 ∈ ℝ+𝑥𝑋 ((𝑥𝐶𝑃) ≤ 𝑦 → ((𝑇𝑥)𝐷(𝑇𝑃)) ≤ 1) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
16716, 166syl5 34 . . 3 (𝑃𝑋 → (𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
168167imp 445 . 2 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
169 blocni.5 . . . 4 𝐵 = (𝑈 BLnOp 𝑊)
1702, 21, 32, 26, 169, 1, 6isblo3i 27523 . . 3 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧))))
17125, 170mpbiran 952 . 2 (𝑇𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑧𝑋 ((normCV𝑊)‘(𝑇𝑧)) ≤ (𝑥 · ((normCV𝑈)‘𝑧)))
172168, 171sylibr 224 1 ((𝑃𝑋𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908   class class class wbr 4618  wf 5848  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887  1c1 9888   · cmul 9892   < clt 10025  cle 10026   / cdiv 10635  +crp 11783  ∞Metcxmt 19659  MetOpencmopn 19664   CnP ccnp 20948  NrmCVeccnv 27306   +𝑣 cpv 27307  BaseSetcba 27308   ·𝑠OLD cns 27309  0veccn0v 27310  𝑣 cnsb 27311  normCVcnmcv 27312  IndMetcims 27313   LnOp clno 27462   BLnOp cblo 27464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-topgen 16032  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-top 20627  df-topon 20644  df-bases 20670  df-cnp 20951  df-grpo 27214  df-gid 27215  df-ginv 27216  df-gdiv 27217  df-ablo 27266  df-vc 27281  df-nv 27314  df-va 27317  df-ba 27318  df-sm 27319  df-0v 27320  df-vs 27321  df-nmcv 27322  df-ims 27323  df-lno 27466  df-nmoo 27467  df-blo 27468  df-0o 27469
This theorem is referenced by:  blocni  27527  lnocni  27528
  Copyright terms: Public domain W3C validator