MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blpnfctr Structured version   Visualization version   GIF version

Theorem blpnfctr 22151
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
blpnfctr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))

Proof of Theorem blpnfctr
StepHypRef Expression
1 eqid 2621 . . . . 5 (𝐷 “ ℝ) = (𝐷 “ ℝ)
21xmeter 22148 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 “ ℝ) Er 𝑋)
323ad2ant1 1080 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐷 “ ℝ) Er 𝑋)
4 simp3 1061 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ (𝑃(ball‘𝐷)+∞))
51xmetec 22149 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃](𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞))
653adant3 1079 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](𝐷 “ ℝ) = (𝑃(ball‘𝐷)+∞))
74, 6eleqtrrd 2701 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴 ∈ [𝑃](𝐷 “ ℝ))
8 elecg 7730 . . . . . 6 ((𝐴 ∈ (𝑃(ball‘𝐷)+∞) ∧ 𝑃𝑋) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
98ancoms 469 . . . . 5 ((𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
1093adant1 1077 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝐴 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝐴))
117, 10mpbid 222 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝑃(𝐷 “ ℝ)𝐴)
123, 11erthi 7738 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝑃](𝐷 “ ℝ) = [𝐴](𝐷 “ ℝ))
13 pnfxr 10036 . . . . . 6 +∞ ∈ ℝ*
14 blssm 22133 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ +∞ ∈ ℝ*) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋)
1513, 14mp3an3 1410 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑃(ball‘𝐷)+∞) ⊆ 𝑋)
1615sselda 3583 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → 𝐴𝑋)
171xmetec 22149 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
1817adantlr 750 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑋) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
1916, 18syldan 487 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
20193impa 1256 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → [𝐴](𝐷 “ ℝ) = (𝐴(ball‘𝐷)+∞))
2112, 6, 203eqtr3d 2663 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555   class class class wbr 4613  ccnv 5073  cima 5077  cfv 5847  (class class class)co 6604   Er wer 7684  [cec 7685  cr 9879  +∞cpnf 10015  *cxr 10017  ∞Metcxmt 19650  ballcbl 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-ec 7689  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-2 11023  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-psmet 19657  df-xmet 19658  df-bl 19660
This theorem is referenced by:  metdstri  22562
  Copyright terms: Public domain W3C validator