Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  blres Structured version   Visualization version   GIF version

Theorem blres 22176
 Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
blres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))

Proof of Theorem blres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inss2 3818 . . . . . . . . . 10 (𝑋𝑌) ⊆ 𝑌
21sseli 3584 . . . . . . . . 9 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑌)
3 blres.2 . . . . . . . . . . 11 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
43oveqi 6628 . . . . . . . . . 10 (𝑃𝐶𝑥) = (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥)
5 ovres 6765 . . . . . . . . . 10 ((𝑃𝑌𝑥𝑌) → (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥) = (𝑃𝐷𝑥))
64, 5syl5eq 2667 . . . . . . . . 9 ((𝑃𝑌𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
72, 6sylan 488 . . . . . . . 8 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
87breq1d 4633 . . . . . . 7 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑃𝐶𝑥) < 𝑅 ↔ (𝑃𝐷𝑥) < 𝑅))
98anbi2d 739 . . . . . 6 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
109pm5.32da 672 . . . . 5 (𝑃 ∈ (𝑋𝑌) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
11103ad2ant2 1081 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
12 elin 3780 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
13 ancom 466 . . . . . . 7 ((𝑥𝑋𝑥𝑌) ↔ (𝑥𝑌𝑥𝑋))
1412, 13bitri 264 . . . . . 6 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑌𝑥𝑋))
1514anbi1i 730 . . . . 5 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅))
16 anass 680 . . . . 5 (((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
1715, 16bitri 264 . . . 4 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
18 ancom 466 . . . 4 (((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1911, 17, 183bitr4g 303 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
20 xmetres 22109 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
213, 20syl5eqel 2702 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘(𝑋𝑌)))
22 elbl 22133 . . . 4 ((𝐶 ∈ (∞Met‘(𝑋𝑌)) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
2321, 22syl3an1 1356 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
24 elin 3780 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌))
25 inss1 3817 . . . . . . 7 (𝑋𝑌) ⊆ 𝑋
2625sseli 3584 . . . . . 6 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑋)
27 elbl 22133 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2826, 27syl3an2 1357 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2928anbi1d 740 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
3024, 29syl5bb 272 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
3119, 23, 303bitr4d 300 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)))
3231eqrdv 2619 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ∩ cin 3559   class class class wbr 4623   × cxp 5082   ↾ cres 5086  ‘cfv 5857  (class class class)co 6615  ℝ*cxr 10033   < clt 10034  ∞Metcxmt 19671  ballcbl 19673 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-map 7819  df-xr 10038  df-psmet 19678  df-xmet 19679  df-bl 19681 This theorem is referenced by:  metrest  22269  xrsmopn  22555  lebnumii  22705  blssp  33223  sstotbnd2  33244  blbnd  33257  ssbnd  33258  iooabslt  39167
 Copyright terms: Public domain W3C validator