MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blres Structured version   Visualization version   GIF version

Theorem blres 23035
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
blres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))

Proof of Theorem blres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4173 . . . . . . . . 9 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑌)
2 blres.2 . . . . . . . . . . 11 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
32oveqi 7163 . . . . . . . . . 10 (𝑃𝐶𝑥) = (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥)
4 ovres 7308 . . . . . . . . . 10 ((𝑃𝑌𝑥𝑌) → (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥) = (𝑃𝐷𝑥))
53, 4syl5eq 2868 . . . . . . . . 9 ((𝑃𝑌𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
61, 5sylan 582 . . . . . . . 8 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
76breq1d 5069 . . . . . . 7 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑃𝐶𝑥) < 𝑅 ↔ (𝑃𝐷𝑥) < 𝑅))
87anbi2d 630 . . . . . 6 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
98pm5.32da 581 . . . . 5 (𝑃 ∈ (𝑋𝑌) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
1093ad2ant2 1130 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
11 elin 4169 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
1211biancomi 465 . . . . . 6 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑌𝑥𝑋))
1312anbi1i 625 . . . . 5 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅))
14 anass 471 . . . . 5 (((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
1513, 14bitri 277 . . . 4 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
16 ancom 463 . . . 4 (((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1710, 15, 163bitr4g 316 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
18 xmetres 22968 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
192, 18eqeltrid 2917 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘(𝑋𝑌)))
20 elbl 22992 . . . 4 ((𝐶 ∈ (∞Met‘(𝑋𝑌)) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
2119, 20syl3an1 1159 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
22 elin 4169 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌))
23 elinel1 4172 . . . . . 6 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑋)
24 elbl 22992 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2523, 24syl3an2 1160 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2625anbi1d 631 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2722, 26syl5bb 285 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2817, 21, 273bitr4d 313 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)))
2928eqrdv 2819 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3935   class class class wbr 5059   × cxp 5548  cres 5552  cfv 6350  (class class class)co 7150  *cxr 10668   < clt 10669  ∞Metcxmet 20524  ballcbl 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-xr 10673  df-psmet 20531  df-xmet 20532  df-bl 20534
This theorem is referenced by:  metrest  23128  xrsmopn  23414  lebnumii  23564  blssp  35025  sstotbnd2  35046  blbnd  35059  ssbnd  35060  iooabslt  41766
  Copyright terms: Public domain W3C validator