Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blssp Structured version   Visualization version   GIF version

Theorem blssp 35025
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blssp.2 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
blssp (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))

Proof of Theorem blssp
StepHypRef Expression
1 metxmet 22938 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
21ad2antrr 724 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋))
3 simprl 769 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌𝑆)
4 simplr 767 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑆𝑋)
5 sseqin2 4191 . . . 4 (𝑆𝑋 ↔ (𝑋𝑆) = 𝑆)
64, 5sylib 220 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑋𝑆) = 𝑆)
73, 6eleqtrrd 2916 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌 ∈ (𝑋𝑆))
8 rpxr 12392 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
98ad2antll 727 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
10 blssp.2 . . 3 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
1110blres 23035 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋𝑆) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
122, 7, 9, 11syl3anc 1367 1 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cin 3934  wss 3935   × cxp 5547  cres 5551  cfv 6349  (class class class)co 7150  *cxr 10668  +crp 12383  ∞Metcxmet 20524  Metcmet 20525  ballcbl 20526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-mulcl 10593  ax-i2m1 10599
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-rp 12384  df-xadd 12502  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534
This theorem is referenced by:  bndss  35058
  Copyright terms: Public domain W3C validator