Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blssp Structured version   Visualization version   GIF version

Theorem blssp 32516
Description: A ball in the subspace metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blssp.2 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
Assertion
Ref Expression
blssp (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))

Proof of Theorem blssp
StepHypRef Expression
1 metxmet 21897 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
21ad2antrr 758 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑀 ∈ (∞Met‘𝑋))
3 simprl 790 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌𝑆)
4 simplr 788 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑆𝑋)
5 sseqin2 3779 . . . 4 (𝑆𝑋 ↔ (𝑋𝑆) = 𝑆)
64, 5sylib 207 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑋𝑆) = 𝑆)
73, 6eleqtrrd 2691 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑌 ∈ (𝑋𝑆))
8 rpxr 11675 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
98ad2antll 761 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
10 blssp.2 . . 3 𝑁 = (𝑀 ↾ (𝑆 × 𝑆))
1110blres 21994 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋𝑆) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
122, 7, 9, 11syl3anc 1318 1 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑌𝑆𝑅 ∈ ℝ+)) → (𝑌(ball‘𝑁)𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cin 3539  wss 3540   × cxp 5026  cres 5030  cfv 5790  (class class class)co 6527  *cxr 9930  +crp 11667  ∞Metcxmt 19501  Metcme 19502  ballcbl 19503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-mulcl 9855  ax-i2m1 9861
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-rp 11668  df-xadd 11782  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511
This theorem is referenced by:  bndss  32549
  Copyright terms: Public domain W3C validator