MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blval2 Structured version   Visualization version   GIF version

Theorem blval2 22290
Description: The ball around a point 𝑃, alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blval2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))

Proof of Theorem blval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rpxr 11792 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blvalps 22113 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
31, 2syl3an3 1358 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
4 nfv 1840 . . 3 𝑥(𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+)
5 nfcv 2761 . . 3 𝑥((𝐷 “ (0[,)𝑅)) “ {𝑃})
6 nfrab1 3114 . . 3 𝑥{𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}
7 psmetf 22034 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8 ffn 6007 . . . . . . 7 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
9 elpreima 6298 . . . . . . 7 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
107, 8, 93syl 18 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
11103ad2ant1 1080 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
12 opelxp 5111 . . . . . . . . . 10 (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ (𝑃𝑋𝑥𝑋))
1312baib 943 . . . . . . . . 9 (𝑃𝑋 → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
14133ad2ant2 1081 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
1514biimpd 219 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) → 𝑥𝑋))
1615adantrd 484 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) → 𝑥𝑋))
17 simprl 793 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) → 𝑥𝑋)
1817ex 450 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝑋))
19 simpl2 1063 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑃𝑋)
2019, 13syl 17 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
21 df-ov 6613 . . . . . . . . . 10 (𝑃𝐷𝑥) = (𝐷‘⟨𝑃, 𝑥⟩)
2221eleq1i 2689 . . . . . . . . 9 ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))
23 0xr 10038 . . . . . . . . . . 11 0 ∈ ℝ*
24 simpl3 1064 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2524rpxrd 11825 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
26 elico1 12168 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
2723, 25, 26sylancr 694 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
28 simpl1 1062 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐷 ∈ (PsMet‘𝑋))
29 simpr 477 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
30 psmetcl 22035 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
3128, 19, 29, 30syl3anc 1323 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
32 psmetge0 22040 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3328, 19, 29, 32syl3anc 1323 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3431, 33jca 554 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)))
3534biantrurd 529 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < 𝑅 ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅)))
36 df-3an 1038 . . . . . . . . . . 11 (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅))
3735, 36syl6rbbr 279 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3827, 37bitrd 268 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3922, 38syl5bbr 274 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
4020, 39anbi12d 746 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4140ex 450 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥𝑋 → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
4216, 18, 41pm5.21ndd 369 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4311, 42bitrd 268 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
44 vex 3192 . . . . . 6 𝑥 ∈ V
45 elimasng 5455 . . . . . 6 ((𝑃𝑋𝑥 ∈ V) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
4644, 45mpan2 706 . . . . 5 (𝑃𝑋 → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
47463ad2ant2 1081 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
48 rabid 3109 . . . . 5 (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
4948a1i 11 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
5043, 47, 493bitr4d 300 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}))
514, 5, 6, 50eqrd 3606 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝐷 “ (0[,)𝑅)) “ {𝑃}) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
523, 51eqtr4d 2658 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3189  {csn 4153  cop 4159   class class class wbr 4618   × cxp 5077  ccnv 5078  cima 5082   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  0cc0 9888  *cxr 10025   < clt 10026  cle 10027  +crp 11784  [,)cico 12127  PsMetcpsmet 19662  ballcbl 19665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-2 11031  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ico 12131  df-psmet 19670  df-bl 19673
This theorem is referenced by:  elbl4  22291  metustbl  22294  psmetutop  22295
  Copyright terms: Public domain W3C validator