MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm1.3ii Structured version   Visualization version   GIF version

Theorem bm1.3ii 4744
Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 4741. Similar to Theorem 1.3ii of [BellMachover] p. 463. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
bm1.3ii.1 𝑥𝑦(𝜑𝑦𝑥)
Assertion
Ref Expression
bm1.3ii 𝑥𝑦(𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem bm1.3ii
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 19.42v 1915 . . 3 (∃𝑥(∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) ↔ (∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))))
2 bimsc1 979 . . . . 5 (((𝜑𝑦𝑧) ∧ (𝑦𝑥 ↔ (𝑦𝑧𝜑))) → (𝑦𝑥𝜑))
32alanimi 1741 . . . 4 ((∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∀𝑦(𝑦𝑥𝜑))
43eximi 1759 . . 3 (∃𝑥(∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∃𝑥𝑦(𝑦𝑥𝜑))
51, 4sylbir 225 . 2 ((∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∃𝑥𝑦(𝑦𝑥𝜑))
6 bm1.3ii.1 . . . . 5 𝑥𝑦(𝜑𝑦𝑥)
7 elequ2 2001 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
87imbi2d 330 . . . . . . 7 (𝑥 = 𝑧 → ((𝜑𝑦𝑥) ↔ (𝜑𝑦𝑧)))
98albidv 1846 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦(𝜑𝑦𝑥) ↔ ∀𝑦(𝜑𝑦𝑧)))
109cbvexv 2274 . . . . 5 (∃𝑥𝑦(𝜑𝑦𝑥) ↔ ∃𝑧𝑦(𝜑𝑦𝑧))
116, 10mpbi 220 . . . 4 𝑧𝑦(𝜑𝑦𝑧)
12 ax-sep 4741 . . . 4 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))
1311, 12pm3.2i 471 . . 3 (∃𝑧𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑)))
1413exan 1785 . 2 𝑧(∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑)))
155, 14exlimiiv 1856 1 𝑥𝑦(𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-sep 4741
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-nf 1707
This theorem is referenced by:  axpow3  4806  pwex  4808  zfpair2  4868  axun2  6904  uniex2  6905
  Copyright terms: Public domain W3C validator