Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnd2 Structured version   Visualization version   GIF version

Theorem bnd2 8837
 Description: A variant of the Boundedness Axiom bnd 8836 that picks a subset 𝑧 out of a possibly proper class 𝐵 in which a property is true. (Contributed by NM, 4-Feb-2004.)
Hypothesis
Ref Expression
bnd2.1 𝐴 ∈ V
Assertion
Ref Expression
bnd2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
Distinct variable groups:   𝜑,𝑧   𝑥,𝑧,𝐴   𝑥,𝑦,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bnd2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2988 . . . 4 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
21ralbii 3050 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝜑))
3 bnd2.1 . . . 4 𝐴 ∈ V
4 raleq 3209 . . . . 5 (𝑣 = 𝐴 → (∀𝑥𝑣𝑦(𝑦𝐵𝜑) ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝜑)))
5 raleq 3209 . . . . . 6 (𝑣 = 𝐴 → (∀𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑) ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
65exbidv 1931 . . . . 5 (𝑣 = 𝐴 → (∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑) ↔ ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
74, 6imbi12d 333 . . . 4 (𝑣 = 𝐴 → ((∀𝑥𝑣𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑)) ↔ (∀𝑥𝐴𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))))
8 bnd 8836 . . . 4 (∀𝑥𝑣𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝑣𝑦𝑤 (𝑦𝐵𝜑))
93, 7, 8vtocl 3331 . . 3 (∀𝑥𝐴𝑦(𝑦𝐵𝜑) → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))
102, 9sylbi 207 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑))
11 vex 3275 . . . . 5 𝑤 ∈ V
1211inex1 4875 . . . 4 (𝑤𝐵) ∈ V
13 inss2 3910 . . . . . . 7 (𝑤𝐵) ⊆ 𝐵
14 sseq1 3700 . . . . . . 7 (𝑧 = (𝑤𝐵) → (𝑧𝐵 ↔ (𝑤𝐵) ⊆ 𝐵))
1513, 14mpbiri 248 . . . . . 6 (𝑧 = (𝑤𝐵) → 𝑧𝐵)
1615biantrurd 530 . . . . 5 (𝑧 = (𝑤𝐵) → (∀𝑥𝐴𝑦𝑧 𝜑 ↔ (𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑)))
17 rexeq 3210 . . . . . . 7 (𝑧 = (𝑤𝐵) → (∃𝑦𝑧 𝜑 ↔ ∃𝑦 ∈ (𝑤𝐵)𝜑))
18 elin 3872 . . . . . . . . . 10 (𝑦 ∈ (𝑤𝐵) ↔ (𝑦𝑤𝑦𝐵))
1918anbi1i 733 . . . . . . . . 9 ((𝑦 ∈ (𝑤𝐵) ∧ 𝜑) ↔ ((𝑦𝑤𝑦𝐵) ∧ 𝜑))
20 anass 684 . . . . . . . . 9 (((𝑦𝑤𝑦𝐵) ∧ 𝜑) ↔ (𝑦𝑤 ∧ (𝑦𝐵𝜑)))
2119, 20bitri 264 . . . . . . . 8 ((𝑦 ∈ (𝑤𝐵) ∧ 𝜑) ↔ (𝑦𝑤 ∧ (𝑦𝐵𝜑)))
2221rexbii2 3109 . . . . . . 7 (∃𝑦 ∈ (𝑤𝐵)𝜑 ↔ ∃𝑦𝑤 (𝑦𝐵𝜑))
2317, 22syl6bb 276 . . . . . 6 (𝑧 = (𝑤𝐵) → (∃𝑦𝑧 𝜑 ↔ ∃𝑦𝑤 (𝑦𝐵𝜑)))
2423ralbidv 3056 . . . . 5 (𝑧 = (𝑤𝐵) → (∀𝑥𝐴𝑦𝑧 𝜑 ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
2516, 24bitr3d 270 . . . 4 (𝑧 = (𝑤𝐵) → ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑) ↔ ∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑)))
2612, 25spcev 3372 . . 3 (∀𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑) → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
2726exlimiv 1939 . 2 (∃𝑤𝑥𝐴𝑦𝑤 (𝑦𝐵𝜑) → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
2810, 27syl 17 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1564  ∃wex 1785   ∈ wcel 2071  ∀wral 2982  ∃wrex 2983  Vcvv 3272   ∩ cin 3647   ⊆ wss 3648 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-reg 8581  ax-inf2 8619 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-ral 2987  df-rex 2988  df-reu 2989  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-iin 4599  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-om 7151  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-r1 8708  df-rank 8709 This theorem is referenced by:  ac6s  9387  bnd2d  42823
 Copyright terms: Public domain W3C validator