Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2d Structured version   Visualization version   GIF version

Theorem bnd2d 42956
Description: Deduction form of bnd2 8931. (Contributed by Emmett Weisz, 19-Jan-2021.)
Hypotheses
Ref Expression
bnd2d.1 (𝜑𝐴 ∈ V)
bnd2d.2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
bnd2d (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Distinct variable groups:   𝜓,𝑧   𝑥,𝑧,𝐴   𝑥,𝑦,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bnd2d
StepHypRef Expression
1 bnd2d.1 . 2 (𝜑𝐴 ∈ V)
2 bnd2d.2 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
3 raleq 3277 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓))
4 raleq 3277 . . . . . 6 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝑧 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
54anbi2d 742 . . . . 5 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ (𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
65exbidv 1999 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
73, 6imbi12d 333 . . 3 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)) ↔ (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))))
8 0ex 4942 . . . . 5 ∅ ∈ V
98elimel 4294 . . . 4 if(𝐴 ∈ V, 𝐴, ∅) ∈ V
109bnd2 8931 . . 3 (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
117, 10dedth 4283 . 2 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)))
121, 2, 11sylc 65 1 (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wex 1853  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  wss 3715  c0 4058  ifcif 4230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-reg 8664  ax-inf2 8713
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-r1 8802  df-rank 8803
This theorem is referenced by:  setrec1lem3  42964
  Copyright terms: Public domain W3C validator