MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndatandm Structured version   Visualization version   GIF version

Theorem bndatandm 24590
Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
bndatandm ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)

Proof of Theorem bndatandm
StepHypRef Expression
1 simpl 473 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
2 sqcl 12881 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
32adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ∈ ℂ)
43abscld 14125 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ∈ ℝ)
5 2nn0 11269 . . . . . 6 2 ∈ ℕ0
6 absexp 13994 . . . . . 6 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2))
71, 5, 6sylancl 693 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2))
8 simpr 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
9 abscl 13968 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
109adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
11 1red 10015 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ)
12 absge0 13977 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1312adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴))
14 0le1 10511 . . . . . . . . 9 0 ≤ 1
1514a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ 1)
1610, 11, 13, 15lt2sqd 12999 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ ((abs‘𝐴)↑2) < (1↑2)))
178, 16mpbid 222 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < (1↑2))
18 sq1 12914 . . . . . 6 (1↑2) = 1
1917, 18syl6breq 4664 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < 1)
207, 19eqbrtrd 4645 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) < 1)
214, 20ltned 10133 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ≠ 1)
22 fveq2 6158 . . . . 5 ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = (abs‘-1))
23 ax-1cn 9954 . . . . . . 7 1 ∈ ℂ
2423absnegi 14089 . . . . . 6 (abs‘-1) = (abs‘1)
25 abs1 13987 . . . . . 6 (abs‘1) = 1
2624, 25eqtri 2643 . . . . 5 (abs‘-1) = 1
2722, 26syl6eq 2671 . . . 4 ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = 1)
2827necon3i 2822 . . 3 ((abs‘(𝐴↑2)) ≠ 1 → (𝐴↑2) ≠ -1)
2921, 28syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ≠ -1)
30 atandm3 24539 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1))
311, 29, 30sylanbrc 697 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  dom cdm 5084  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897   < clt 10034  cle 10035  -cneg 10227  2c2 11030  0cn0 11252  cexp 12816  abscabs 13924  arctancatan 24525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-atan 24528
This theorem is referenced by:  atantayl  24598  log2cnv  24605
  Copyright terms: Public domain W3C validator