Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bndss Structured version   Visualization version   GIF version

Theorem bndss 35058
Description: A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
bndss ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))

Proof of Theorem bndss
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metres2 22967 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
21adantlr 713 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆))
3 ssel2 3962 . . . . . . . . . . . . 13 ((𝑆𝑋𝑥𝑆) → 𝑥𝑋)
43ancoms 461 . . . . . . . . . . . 12 ((𝑥𝑆𝑆𝑋) → 𝑥𝑋)
5 oveq1 7157 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)𝑟))
65eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
76rexbidv 3297 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
87rspcva 3621 . . . . . . . . . . . 12 ((𝑥𝑋 ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
94, 8sylan 582 . . . . . . . . . . 11 (((𝑥𝑆𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
109adantlll 716 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
11 dfss 3953 . . . . . . . . . . . . . . . . . . 19 (𝑆𝑋𝑆 = (𝑆𝑋))
1211biimpi 218 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋𝑆 = (𝑆𝑋))
13 incom 4178 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋) = (𝑋𝑆)
1412, 13syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑆𝑋𝑆 = (𝑋𝑆))
15 ineq1 4181 . . . . . . . . . . . . . . . . 17 (𝑋 = (𝑥(ball‘𝑀)𝑟) → (𝑋𝑆) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1614, 15sylan9eq 2876 . . . . . . . . . . . . . . . 16 ((𝑆𝑋𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1716adantll 712 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
1817adantlr 713 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
19 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆))
2019blssp 35025 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝑆𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2120an4s 658 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ (𝑆𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2221anassrs 470 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2322adantr 483 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟) = ((𝑥(ball‘𝑀)𝑟) ∩ 𝑆))
2418, 23eqtr4d 2859 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2524ex 415 . . . . . . . . . . . 12 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ 𝑟 ∈ ℝ+) → (𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2625reximdva 3274 . . . . . . . . . . 11 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → (∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
2726imp 409 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2810, 27syldan 593 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ 𝑆𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
2928an32s 650 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3029ex 415 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑆) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3130an32s 650 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) → (𝑆𝑋 → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3231imp 409 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑥𝑆) ∧ 𝑆𝑋) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3332an32s 650 . . . 4 ((((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) ∧ 𝑥𝑆) → ∃𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
3433ralrimiva 3182 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟))
352, 34jca 514 . 2 (((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
36 isbnd 35052 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
3736anbi1i 625 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) ↔ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) ∧ 𝑆𝑋))
38 isbnd 35052 . 2 ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆) ↔ ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (Met‘𝑆) ∧ ∀𝑥𝑆𝑟 ∈ ℝ+ 𝑆 = (𝑥(ball‘(𝑀 ↾ (𝑆 × 𝑆)))𝑟)))
3935, 37, 383imtr4i 294 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cin 3935  wss 3936   × cxp 5548  cres 5552  cfv 6350  (class class class)co 7150  +crp 12383  Metcmet 20525  ballcbl 20526  Bndcbnd 35039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-mulcl 10593  ax-i2m1 10599
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-rp 12384  df-xadd 12502  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-bnd 35051
This theorem is referenced by:  ssbnd  35060
  Copyright terms: Public domain W3C validator