Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1006 Structured version   Visualization version   GIF version

Theorem bnj1006 32234
Description: Technical lemma for bnj69 32284. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1006.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1006.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1006.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1006.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj1006.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1006.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1006.7 (𝜑′[𝑝 / 𝑛]𝜑)
bnj1006.8 (𝜓′[𝑝 / 𝑛]𝜓)
bnj1006.9 (𝜒′[𝑝 / 𝑛]𝜒)
bnj1006.10 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj1006.11 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj1006.12 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj1006.13 𝐷 = (ω ∖ {∅})
bnj1006.15 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj1006.16 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj1006.28 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
Assertion
Ref Expression
bnj1006 ((𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑛   𝑖,𝐺   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑓,𝑋,𝑛   𝑓,𝑝,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜃(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑧,𝑝)   𝐶(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑖,𝑚,𝑝)   𝑅(𝑧,𝑝)   𝐺(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑧,𝑖,𝑚,𝑝)   𝜑′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj1006
StepHypRef Expression
1 bnj1006.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
21simprbi 499 . . . 4 (𝜂𝑦 ∈ (𝑓𝑖))
32bnj708 32029 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑦 ∈ (𝑓𝑖))
4 bnj1006.4 . . . . . . . 8 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
5 bnj253 31976 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
65simp1bi 1141 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) → (𝑅 FrSe 𝐴𝑋𝐴))
74, 6sylbi 219 . . . . . . 7 (𝜃 → (𝑅 FrSe 𝐴𝑋𝐴))
87bnj705 32026 . . . . . 6 ((𝜃𝜒𝜏𝜂) → (𝑅 FrSe 𝐴𝑋𝐴))
9 bnj643 32022 . . . . . . 7 ((𝜃𝜒𝜏𝜂) → 𝜒)
10 bnj1006.5 . . . . . . . . 9 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
11 3simpc 1146 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
1210, 11sylbi 219 . . . . . . . 8 (𝜏 → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
1312bnj707 32028 . . . . . . 7 ((𝜃𝜒𝜏𝜂) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
14 3anass 1091 . . . . . . 7 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ (𝜒 ∧ (𝑛 = suc 𝑚𝑝 = suc 𝑛)))
159, 13, 14sylanbrc 585 . . . . . 6 ((𝜃𝜒𝜏𝜂) → (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛))
16 bnj1006.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
17 bnj1006.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 bnj1006.3 . . . . . . 7 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
19 bnj1006.13 . . . . . . 7 𝐷 = (ω ∖ {∅})
20 bnj1006.15 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
21 biid 263 . . . . . . 7 ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓))
22 biid 263 . . . . . . 7 ((𝑛𝐷𝑝 = suc 𝑛𝑚𝑛) ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
2316, 17, 18, 19, 20, 21, 22bnj969 32220 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
248, 15, 23syl2anc 586 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝐶 ∈ V)
2518bnj1235 32078 . . . . . 6 (𝜒𝑓 Fn 𝑛)
2625bnj706 32027 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝑓 Fn 𝑛)
2710simp3bi 1143 . . . . . 6 (𝜏𝑝 = suc 𝑛)
2827bnj707 32028 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝑝 = suc 𝑛)
291simplbi 500 . . . . . 6 (𝜂𝑖𝑛)
3029bnj708 32029 . . . . 5 ((𝜃𝜒𝜏𝜂) → 𝑖𝑛)
3124, 26, 28, 30bnj951 32049 . . . 4 ((𝜃𝜒𝜏𝜂) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
32 bnj1006.16 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
3332bnj945 32047 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
3431, 33syl 17 . . 3 ((𝜃𝜒𝜏𝜂) → (𝐺𝑖) = (𝑓𝑖))
353, 34eleqtrrd 2918 . 2 ((𝜃𝜒𝜏𝜂) → 𝑦 ∈ (𝐺𝑖))
36 bnj1006.28 . . . . 5 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
3736anim1i 616 . . . 4 (((𝜃𝜒𝜏𝜂) ∧ 𝑦 ∈ (𝐺𝑖)) → ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝) ∧ 𝑦 ∈ (𝐺𝑖)))
38 df-bnj17 31959 . . . 4 ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ (𝐺𝑖)) ↔ ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝) ∧ 𝑦 ∈ (𝐺𝑖)))
3937, 38sylibr 236 . . 3 (((𝜃𝜒𝜏𝜂) ∧ 𝑦 ∈ (𝐺𝑖)) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ (𝐺𝑖)))
40 bnj1006.7 . . . 4 (𝜑′[𝑝 / 𝑛]𝜑)
41 bnj1006.8 . . . 4 (𝜓′[𝑝 / 𝑛]𝜓)
42 bnj1006.9 . . . 4 (𝜒′[𝑝 / 𝑛]𝜒)
43 bnj1006.10 . . . 4 (𝜑″[𝐺 / 𝑓]𝜑′)
44 bnj1006.11 . . . 4 (𝜓″[𝐺 / 𝑓]𝜓′)
45 bnj1006.12 . . . 4 (𝜒″[𝐺 / 𝑓]𝜒′)
4616, 17, 18, 40, 41, 42, 43, 44, 45, 20, 32bnj999 32232 . . 3 ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ (𝐺𝑖)) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
4739, 46syl 17 . 2 (((𝜃𝜒𝜏𝜂) ∧ 𝑦 ∈ (𝐺𝑖)) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
4835, 47mpdan 685 1 ((𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  [wsbc 3774  cdif 3935  cun 3936  wss 3938  c0 4293  {csn 4569  cop 4575   ciun 4921  suc csuc 6195   Fn wfn 6352  cfv 6357  ωcom 7582  w-bnj17 31958   predc-bnj14 31960   FrSe w-bnj15 31964   trClc-bnj18 31966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463  ax-reg 9058
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-bnj17 31959  df-bnj14 31961  df-bnj13 31963  df-bnj15 31965
This theorem is referenced by:  bnj1020  32239
  Copyright terms: Public domain W3C validator