Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1097 Structured version   Visualization version   GIF version

Theorem bnj1097 31356
Description: Technical lemma for bnj69 31385. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1097.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1097.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1097.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
Assertion
Ref Expression
bnj1097 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)

Proof of Theorem bnj1097
StepHypRef Expression
1 bnj1097.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1097.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
32biimpi 206 . . . . . . . 8 (𝜑 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
41, 3bnj771 31141 . . . . . . 7 (𝜒 → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
543ad2ant3 1130 . . . . . 6 ((𝜃𝜏𝜒) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
65adantr 472 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
7 bnj1097.5 . . . . . . . 8 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
87simp3bi 1142 . . . . . . 7 (𝜏 → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
983ad2ant2 1129 . . . . . 6 ((𝜃𝜏𝜒) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
109adantr 472 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
116, 10jca 555 . . . 4 (((𝜃𝜏𝜒) ∧ 𝜑0) → ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
1211anim2i 594 . . 3 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)))
13 3anass 1081 . . 3 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) ↔ (𝑖 = ∅ ∧ ((𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)))
1412, 13sylibr 224 . 2 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
15 fveq2 6352 . . . . . . 7 (𝑖 = ∅ → (𝑓𝑖) = (𝑓‘∅))
1615eqeq1d 2762 . . . . . 6 (𝑖 = ∅ → ((𝑓𝑖) = pred(𝑋, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
1716biimpar 503 . . . . 5 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
1817adantr 472 . . . 4 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) = pred(𝑋, 𝐴, 𝑅))
19 simpr 479 . . . 4 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
2018, 19eqsstrd 3780 . . 3 (((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
21203impa 1101 . 2 ((𝑖 = ∅ ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
2214, 21syl 17 1 ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715  c0 4058   Fn wfn 6044  cfv 6049  w-bnj17 31061   predc-bnj14 31063   TrFow-bnj19 31071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-bnj17 31062
This theorem is referenced by:  bnj1030  31362
  Copyright terms: Public domain W3C validator