Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj110 Structured version   Visualization version   GIF version

Theorem bnj110 30027
Description: Well-founded induction restricted to a set (𝐴 ∈ V). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj110.1 𝐴 ∈ V
bnj110.2 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
Assertion
Ref Expression
bnj110 ((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem bnj110
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralnex 2879 . . . . 5 (∀𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ [𝑧 / 𝑥]𝜑 ↔ ¬ ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑)
2 vex 3080 . . . . . . . 8 𝑧 ∈ V
3 sbcng 3347 . . . . . . . 8 (𝑧 ∈ V → ([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑))
42, 3ax-mp 5 . . . . . . 7 ([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑)
54bicomi 212 . . . . . 6 [𝑧 / 𝑥]𝜑[𝑧 / 𝑥] ¬ 𝜑)
65ralbii 2867 . . . . 5 (∀𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥] ¬ 𝜑)
71, 6bitr3i 264 . . . 4 (¬ ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥] ¬ 𝜑)
8 df-rab 2809 . . . . . . 7 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
98eleq2i 2584 . . . . . 6 (𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)})
10 df-sbc 3307 . . . . . . 7 ([𝑧 / 𝑥](𝑥𝐴 ∧ ¬ 𝜑) ↔ 𝑧 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)})
11 sbcan 3349 . . . . . . . 8 ([𝑧 / 𝑥](𝑥𝐴 ∧ ¬ 𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴[𝑧 / 𝑥] ¬ 𝜑))
12 sbcel1v 3366 . . . . . . . . 9 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
1312anbi1i 726 . . . . . . . 8 (([𝑧 / 𝑥]𝑥𝐴[𝑧 / 𝑥] ¬ 𝜑) ↔ (𝑧𝐴[𝑧 / 𝑥] ¬ 𝜑))
1411, 13bitri 262 . . . . . . 7 ([𝑧 / 𝑥](𝑥𝐴 ∧ ¬ 𝜑) ↔ (𝑧𝐴[𝑧 / 𝑥] ¬ 𝜑))
1510, 14bitr3i 264 . . . . . 6 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)} ↔ (𝑧𝐴[𝑧 / 𝑥] ¬ 𝜑))
169, 15bitri 262 . . . . 5 (𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑧𝐴[𝑧 / 𝑥] ¬ 𝜑))
1716simprbi 478 . . . 4 (𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → [𝑧 / 𝑥] ¬ 𝜑)
187, 17mprgbir 2815 . . 3 ¬ ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑
19 bnj110.1 . . . . . . . . 9 𝐴 ∈ V
2019rabex 4639 . . . . . . . 8 {𝑥𝐴 ∣ ¬ 𝜑} ∈ V
2120biantrur 525 . . . . . . 7 (𝑅 Fr 𝐴 ↔ ({𝑥𝐴 ∣ ¬ 𝜑} ∈ V ∧ 𝑅 Fr 𝐴))
22 rexnal 2882 . . . . . . . 8 (∃𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴 𝜑)
23 rabn0 3815 . . . . . . . . 9 ({𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅ ↔ ∃𝑥𝐴 ¬ 𝜑)
24 ssrab2 3554 . . . . . . . . . 10 {𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴
2524biantrur 525 . . . . . . . . 9 ({𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅ ↔ ({𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅))
2623, 25bitr3i 264 . . . . . . . 8 (∃𝑥𝐴 ¬ 𝜑 ↔ ({𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅))
2722, 26bitr3i 264 . . . . . . 7 (¬ ∀𝑥𝐴 𝜑 ↔ ({𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅))
28 fri 4894 . . . . . . 7 ((({𝑥𝐴 ∣ ¬ 𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅)) → ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}∀𝑤 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧)
2921, 27, 28syl2anb 494 . . . . . 6 ((𝑅 Fr 𝐴 ∧ ¬ ∀𝑥𝐴 𝜑) → ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}∀𝑤 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧)
30 eqid 2514 . . . . . . . 8 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥𝐴 ∣ ¬ 𝜑}
3130bnj23 29883 . . . . . . 7 (∀𝑤 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧 → ∀𝑦𝐴 (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑))
32 df-ral 2805 . . . . . . . . . 10 (∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)))
3332sbcbii 3362 . . . . . . . . 9 ([𝑧 / 𝑥]𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑) ↔ [𝑧 / 𝑥]𝑦(𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)))
34 sbcal 3356 . . . . . . . . . 10 ([𝑧 / 𝑥]𝑦(𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)) ↔ ∀𝑦[𝑧 / 𝑥](𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)))
35 sbcimg 3348 . . . . . . . . . . . . 13 (𝑧 ∈ V → ([𝑧 / 𝑥](𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)) ↔ ([𝑧 / 𝑥]𝑦𝐴[𝑧 / 𝑥](𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))))
362, 35ax-mp 5 . . . . . . . . . . . 12 ([𝑧 / 𝑥](𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)) ↔ ([𝑧 / 𝑥]𝑦𝐴[𝑧 / 𝑥](𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)))
37 nfv 1796 . . . . . . . . . . . . . . 15 𝑥 𝑦𝐴
3837sbcgf 3372 . . . . . . . . . . . . . 14 (𝑧 ∈ V → ([𝑧 / 𝑥]𝑦𝐴𝑦𝐴))
392, 38ax-mp 5 . . . . . . . . . . . . 13 ([𝑧 / 𝑥]𝑦𝐴𝑦𝐴)
40 sbcimg 3348 . . . . . . . . . . . . . . 15 (𝑧 ∈ V → ([𝑧 / 𝑥](𝑦𝑅𝑥[𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝑦𝑅𝑥[𝑧 / 𝑥][𝑦 / 𝑥]𝜑)))
412, 40ax-mp 5 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥](𝑦𝑅𝑥[𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝑦𝑅𝑥[𝑧 / 𝑥][𝑦 / 𝑥]𝜑))
42 sbcbr2g 4538 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → ([𝑧 / 𝑥]𝑦𝑅𝑥𝑦𝑅𝑧 / 𝑥𝑥))
432, 42ax-mp 5 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥]𝑦𝑅𝑥𝑦𝑅𝑧 / 𝑥𝑥)
44 csbvarg 3858 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ V → 𝑧 / 𝑥𝑥 = 𝑧)
452, 44ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑧 / 𝑥𝑥 = 𝑧
4645breq2i 4489 . . . . . . . . . . . . . . . 16 (𝑦𝑅𝑧 / 𝑥𝑥𝑦𝑅𝑧)
4743, 46bitri 262 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝑦𝑅𝑥𝑦𝑅𝑧)
48 nfsbc1v 3326 . . . . . . . . . . . . . . . . 17 𝑥[𝑦 / 𝑥]𝜑
4948sbcgf 3372 . . . . . . . . . . . . . . . 16 (𝑧 ∈ V → ([𝑧 / 𝑥][𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
502, 49ax-mp 5 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥][𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
5147, 50imbi12i 338 . . . . . . . . . . . . . 14 (([𝑧 / 𝑥]𝑦𝑅𝑥[𝑧 / 𝑥][𝑦 / 𝑥]𝜑) ↔ (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑))
5241, 51bitri 262 . . . . . . . . . . . . 13 ([𝑧 / 𝑥](𝑦𝑅𝑥[𝑦 / 𝑥]𝜑) ↔ (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑))
5339, 52imbi12i 338 . . . . . . . . . . . 12 (([𝑧 / 𝑥]𝑦𝐴[𝑧 / 𝑥](𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)) ↔ (𝑦𝐴 → (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑)))
5436, 53bitri 262 . . . . . . . . . . 11 ([𝑧 / 𝑥](𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)) ↔ (𝑦𝐴 → (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑)))
5554albii 1722 . . . . . . . . . 10 (∀𝑦[𝑧 / 𝑥](𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)) ↔ ∀𝑦(𝑦𝐴 → (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑)))
5634, 55bitri 262 . . . . . . . . 9 ([𝑧 / 𝑥]𝑦(𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)) ↔ ∀𝑦(𝑦𝐴 → (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑)))
5733, 56bitri 262 . . . . . . . 8 ([𝑧 / 𝑥]𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦𝐴 → (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑)))
58 bnj110.2 . . . . . . . . 9 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
5958sbcbii 3362 . . . . . . . 8 ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
60 df-ral 2805 . . . . . . . 8 (∀𝑦𝐴 (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦𝐴 → (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑)))
6157, 59, 603bitr4i 290 . . . . . . 7 ([𝑧 / 𝑥]𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑧[𝑦 / 𝑥]𝜑))
6231, 61sylibr 222 . . . . . 6 (∀𝑤 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧[𝑧 / 𝑥]𝜓)
6329, 62bnj31 29884 . . . . 5 ((𝑅 Fr 𝐴 ∧ ¬ ∀𝑥𝐴 𝜑) → ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜓)
64 nfv 1796 . . . . . . . 8 𝑧(𝜓𝜑)
65 nfsbc1v 3326 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜓
66 nfsbc1v 3326 . . . . . . . . 9 𝑥[𝑧 / 𝑥]𝜑
6765, 66nfim 2051 . . . . . . . 8 𝑥([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑)
68 sbceq1a 3317 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜓[𝑧 / 𝑥]𝜓))
69 sbceq1a 3317 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
7068, 69imbi12d 332 . . . . . . . 8 (𝑥 = 𝑧 → ((𝜓𝜑) ↔ ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑)))
7164, 67, 70cbvral 3047 . . . . . . 7 (∀𝑥𝐴 (𝜓𝜑) ↔ ∀𝑧𝐴 ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑))
72 elrabi 3232 . . . . . . . . 9 (𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → 𝑧𝐴)
7372imim1i 60 . . . . . . . 8 ((𝑧𝐴 → ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑)) → (𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑)))
7473ralimi2 2837 . . . . . . 7 (∀𝑧𝐴 ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑) → ∀𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑))
7571, 74sylbi 205 . . . . . 6 (∀𝑥𝐴 (𝜓𝜑) → ∀𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑))
76 rexim 2895 . . . . . 6 (∀𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ([𝑧 / 𝑥]𝜓[𝑧 / 𝑥]𝜑) → (∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜓 → ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑))
7775, 76syl 17 . . . . 5 (∀𝑥𝐴 (𝜓𝜑) → (∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜓 → ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑))
7863, 77mpan9 484 . . . 4 (((𝑅 Fr 𝐴 ∧ ¬ ∀𝑥𝐴 𝜑) ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑)
7978an32s 841 . . 3 (((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) ∧ ¬ ∀𝑥𝐴 𝜑) → ∃𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑)
8018, 79mto 186 . 2 ¬ ((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) ∧ ¬ ∀𝑥𝐴 𝜑)
81 iman 438 . 2 (((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑) ↔ ¬ ((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) ∧ ¬ ∀𝑥𝐴 𝜑))
8280, 81mpbir 219 1 ((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  wal 1472   = wceq 1474  wcel 1938  {cab 2500  wne 2684  wral 2800  wrex 2801  {crab 2804  Vcvv 3077  [wsbc 3306  csb 3403  wss 3444  c0 3777   class class class wbr 4481   Fr wfr 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-br 4482  df-fr 4891
This theorem is referenced by:  bnj157  30028  bnj580  30082  bnj1052  30142  bnj1030  30154  bnj1133  30156
  Copyright terms: Public domain W3C validator