Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1110 Structured version   Visualization version   GIF version

Theorem bnj1110 32249
Description: Technical lemma for bnj69 32277. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1110.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1110.7 𝐷 = (ω ∖ {∅})
bnj1110.18 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
bnj1110.19 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
bnj1110.26 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Assertion
Ref Expression
bnj1110 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
Distinct variable groups:   𝐷,𝑗   𝑖,𝑗   𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛)   𝜓(𝑓,𝑖,𝑗,𝑛)   𝜒(𝑓,𝑖,𝑗,𝑛)   𝜃(𝑓,𝑖,𝑗,𝑛)   𝜏(𝑓,𝑖,𝑗,𝑛)   𝜎(𝑓,𝑖,𝑗,𝑛)   𝐵(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑓,𝑖,𝑛)   𝐾(𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑓,𝑖,𝑗,𝑛)   𝜑0(𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1110
StepHypRef Expression
1 bnj1110.7 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
21bnj1098 32050 . . . . . . . 8 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
3 bnj219 31998 . . . . . . . . . . 11 (𝑖 = suc 𝑗𝑗 E 𝑖)
43adantl 484 . . . . . . . . . 10 ((𝑗𝑛𝑖 = suc 𝑗) → 𝑗 E 𝑖)
54ancli 551 . . . . . . . . 9 ((𝑗𝑛𝑖 = suc 𝑗) → ((𝑗𝑛𝑖 = suc 𝑗) ∧ 𝑗 E 𝑖))
6 df-3an 1085 . . . . . . . . 9 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ↔ ((𝑗𝑛𝑖 = suc 𝑗) ∧ 𝑗 E 𝑖))
75, 6sylibr 236 . . . . . . . 8 ((𝑗𝑛𝑖 = suc 𝑗) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖))
82, 7bnj1023 32047 . . . . . . 7 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖))
9 bnj1110.3 . . . . . . . . . . . 12 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
109bnj1232 32070 . . . . . . . . . . 11 (𝜒𝑛𝐷)
11103ad2ant3 1131 . . . . . . . . . 10 ((𝜃𝜏𝜒) → 𝑛𝐷)
12 bnj1110.19 . . . . . . . . . . 11 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
1312bnj1232 32070 . . . . . . . . . 10 (𝜑0𝑖𝑛)
1411, 13anim12ci 615 . . . . . . . . 9 (((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑖𝑛𝑛𝐷))
1514anim2i 618 . . . . . . . 8 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝑛𝐷)))
16 3anass 1091 . . . . . . . 8 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ (𝑖 ≠ ∅ ∧ (𝑖𝑛𝑛𝐷)))
1715, 16sylibr 236 . . . . . . 7 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))
188, 17bnj1101 32051 . . . . . 6 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖))
19 3simpb 1145 . . . . . . . . 9 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → (𝑗𝑛𝑗 E 𝑖))
2012bnj1235 32071 . . . . . . . . . . 11 (𝜑0𝜎)
2120ad2antll 727 . . . . . . . . . 10 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜎)
22 bnj1110.18 . . . . . . . . . 10 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
2321, 22sylib 220 . . . . . . . . 9 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
2419, 23syl5 34 . . . . . . . 8 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → 𝜂′))
2524a2i 14 . . . . . . 7 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜂′))
26 pm3.43 476 . . . . . . 7 ((((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖)) ∧ ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜂′)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))
2725, 26mpdan 685 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))
2818, 27bnj101 31988 . . . . 5 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))
2912bnj1247 32075 . . . . . . 7 (𝜑0𝑓𝐾)
3029ad2antll 727 . . . . . 6 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝑓𝐾)
31 pm3.43i 475 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝑓𝐾) → (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
3230, 31ax-mp 5 . . . . 5 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
3328, 32bnj101 31988 . . . 4 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))
34 fndm 6450 . . . . . . . . 9 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
359, 34bnj770 32029 . . . . . . . 8 (𝜒 → dom 𝑓 = 𝑛)
36353ad2ant3 1131 . . . . . . 7 ((𝜃𝜏𝜒) → dom 𝑓 = 𝑛)
3736ad2antrl 726 . . . . . 6 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → dom 𝑓 = 𝑛)
3837eleq2d 2898 . . . . 5 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗 ∈ dom 𝑓𝑗𝑛))
39 pm3.43i 475 . . . . 5 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗 ∈ dom 𝑓𝑗𝑛)) → (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))))
4038, 39ax-mp 5 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
4133, 40bnj101 31988 . . 3 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
42 bnj268 31974 . . . . . 6 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ 𝑓𝐾 ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′) ↔ ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′))
43 bnj251 31967 . . . . . 6 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ 𝑓𝐾 ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′) ↔ ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
4442, 43bitr3i 279 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) ↔ ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
4544imbi2i 338 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′)) ↔ ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
4645exbii 1844 . . 3 (∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′)) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
4741, 46mpbir 233 . 2 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′))
48 simp1 1132 . . . 4 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → 𝑗𝑛)
4948bnj706 32020 . . 3 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑗𝑛)
50 simp2 1133 . . . 4 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → 𝑖 = suc 𝑗)
5150bnj706 32020 . . 3 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑖 = suc 𝑗)
52 bnj258 31973 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) ↔ (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′) ∧ 𝑓𝐾))
5352simprbi 499 . . . 4 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑓𝐾)
54 bnj642 32014 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → (𝑗 ∈ dom 𝑓𝑗𝑛))
5549, 54mpbird 259 . . . 4 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑗 ∈ dom 𝑓)
56 bnj645 32016 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝜂′)
57 bnj1110.26 . . . . 5 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
5856, 57sylib 220 . . . 4 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
5953, 55, 58mp2and 697 . . 3 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → (𝑓𝑗) ⊆ 𝐵)
6049, 51, 593jca 1124 . 2 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
6147, 60bnj1023 32047 1 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  cdif 3933  wss 3936  c0 4291  {csn 4561   class class class wbr 5059   E cep 5459  dom cdm 5550  suc csuc 6188   Fn wfn 6345  cfv 6350  ωcom 7574  w-bnj17 31951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-tr 5166  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-fn 6353  df-om 7575  df-bnj17 31952
This theorem is referenced by:  bnj1118  32251
  Copyright terms: Public domain W3C validator