Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1118 Structured version   Visualization version   GIF version

Theorem bnj1118 32251
Description: Technical lemma for bnj69 32277. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1118.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1118.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1118.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1118.7 𝐷 = (ω ∖ {∅})
bnj1118.18 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
bnj1118.19 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
bnj1118.26 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Assertion
Ref Expression
bnj1118 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Distinct variable groups:   𝐴,𝑖,𝑗,𝑦   𝑦,𝐵   𝐷,𝑗   𝑅,𝑖,𝑗,𝑦   𝑓,𝑖,𝑗,𝑦   𝑖,𝑛,𝑗
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜏(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜎(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑓,𝑛)   𝐵(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑖,𝑛)   𝑅(𝑓,𝑛)   𝐾(𝑦,𝑓,𝑖,𝑗,𝑛)   𝑋(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜑0(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1118
StepHypRef Expression
1 bnj1118.3 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1118.7 . . . 4 𝐷 = (ω ∖ {∅})
3 bnj1118.18 . . . 4 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
4 bnj1118.19 . . . 4 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
5 bnj1118.26 . . . 4 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
61, 2, 3, 4, 5bnj1110 32249 . . 3 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
7 ancl 547 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))))
86, 7bnj101 31988 . 2 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)))
9 simpr2 1191 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑖 = suc 𝑗)
101bnj1254 32076 . . . . . . 7 (𝜒𝜓)
11103ad2ant3 1131 . . . . . 6 ((𝜃𝜏𝜒) → 𝜓)
1211ad2antrl 726 . . . . 5 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜓)
1312adantr 483 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝜓)
141bnj1232 32070 . . . . . . . . 9 (𝜒𝑛𝐷)
15143ad2ant3 1131 . . . . . . . 8 ((𝜃𝜏𝜒) → 𝑛𝐷)
1615ad2antrl 726 . . . . . . 7 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝑛𝐷)
1716adantr 483 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑛𝐷)
18 simpr1 1190 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑗𝑛)
192bnj923 32034 . . . . . . . 8 (𝑛𝐷𝑛 ∈ ω)
2019anim1i 616 . . . . . . 7 ((𝑛𝐷𝑗𝑛) → (𝑛 ∈ ω ∧ 𝑗𝑛))
2120ancomd 464 . . . . . 6 ((𝑛𝐷𝑗𝑛) → (𝑗𝑛𝑛 ∈ ω))
2217, 18, 21syl2anc 586 . . . . 5 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑗𝑛𝑛 ∈ ω))
23 elnn 7584 . . . . 5 ((𝑗𝑛𝑛 ∈ ω) → 𝑗 ∈ ω)
2422, 23syl 17 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑗 ∈ ω)
254bnj1232 32070 . . . . . 6 (𝜑0𝑖𝑛)
2625adantl 484 . . . . 5 (((𝜃𝜏𝜒) ∧ 𝜑0) → 𝑖𝑛)
2726ad2antlr 725 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → 𝑖𝑛)
289, 13, 24, 27bnj951 32042 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛))
29 bnj1118.5 . . . . . . 7 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
3029simp2bi 1142 . . . . . 6 (𝜏 → TrFo(𝐵, 𝐴, 𝑅))
31303ad2ant2 1130 . . . . 5 ((𝜃𝜏𝜒) → TrFo(𝐵, 𝐴, 𝑅))
3231ad2antrl 726 . . . 4 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → TrFo(𝐵, 𝐴, 𝑅))
33 simp3 1134 . . . 4 ((𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵) → (𝑓𝑗) ⊆ 𝐵)
3432, 33anim12i 614 . . 3 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵))
35 bnj256 31971 . . . . 5 ((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) ↔ ((𝑖 = suc 𝑗𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖𝑛)))
36 bnj1118.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3736bnj1112 32250 . . . . . . . . 9 (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
3837biimpi 218 . . . . . . . 8 (𝜓 → ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
393819.21bi 2183 . . . . . . 7 (𝜓 → ((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
40 eleq1 2900 . . . . . . . . 9 (𝑖 = suc 𝑗 → (𝑖𝑛 ↔ suc 𝑗𝑛))
4140anbi2d 630 . . . . . . . 8 (𝑖 = suc 𝑗 → ((𝑗 ∈ ω ∧ 𝑖𝑛) ↔ (𝑗 ∈ ω ∧ suc 𝑗𝑛)))
42 fveqeq2 6674 . . . . . . . 8 (𝑖 = suc 𝑗 → ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
4341, 42imbi12d 347 . . . . . . 7 (𝑖 = suc 𝑗 → (((𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4439, 43syl5ibr 248 . . . . . 6 (𝑖 = suc 𝑗 → (𝜓 → ((𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))))
4544imp31 420 . . . . 5 (((𝑖 = suc 𝑗𝜓) ∧ (𝑗 ∈ ω ∧ 𝑖𝑛)) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
4635, 45sylbi 219 . . . 4 ((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) → (𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅))
47 df-bnj19 31962 . . . . . . 7 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑦𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
48 ssralv 4033 . . . . . . 7 ((𝑓𝑗) ⊆ 𝐵 → (∀𝑦𝐵 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
4947, 48syl5bi 244 . . . . . 6 ((𝑓𝑗) ⊆ 𝐵 → ( TrFo(𝐵, 𝐴, 𝑅) → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5049impcom 410 . . . . 5 (( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵) → ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
51 iunss 4962 . . . . 5 ( 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵 ↔ ∀𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
5250, 51sylibr 236 . . . 4 (( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵) → 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
53 sseq1 3992 . . . . 5 ((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) → ((𝑓𝑖) ⊆ 𝐵 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵))
5453biimpar 480 . . . 4 (((𝑓𝑖) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ∧ 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅) ⊆ 𝐵) → (𝑓𝑖) ⊆ 𝐵)
5546, 52, 54syl2an 597 . . 3 (((𝑖 = suc 𝑗𝜓𝑗 ∈ ω ∧ 𝑖𝑛) ∧ ( TrFo(𝐵, 𝐴, 𝑅) ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑓𝑖) ⊆ 𝐵)
5628, 34, 55syl2anc 586 . 2 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) ∧ (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵)) → (𝑓𝑖) ⊆ 𝐵)
578, 56bnj1023 32047 1 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  Vcvv 3495  cdif 3933  wss 3936  c0 4291  {csn 4561   ciun 4912   class class class wbr 5059   E cep 5459  dom cdm 5550  suc csuc 6188   Fn wfn 6345  cfv 6350  ωcom 7574  w-bnj17 31951   predc-bnj14 31953   TrFow-bnj19 31961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-tr 5166  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fn 6353  df-fv 6358  df-om 7575  df-bnj17 31952  df-bnj19 31962
This theorem is referenced by:  bnj1030  32254
  Copyright terms: Public domain W3C validator