![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1133 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31383. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1133.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1133.5 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1133.7 | ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) |
bnj1133.8 | ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) |
Ref | Expression |
---|---|
bnj1133 | ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1133.5 | . . 3 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | bnj1133.3 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj1071 31350 | . . 3 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
4 | 1, 3 | bnj769 31137 | . 2 ⊢ (𝜒 → E Fr 𝑛) |
5 | impexp 461 | . . . . . 6 ⊢ (((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) ↔ (𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
6 | 5 | bicomi 214 | . . . . 5 ⊢ ((𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
7 | 6 | albii 1894 | . . . 4 ⊢ (∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ∀𝑖((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
8 | bnj1133.8 | . . . 4 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) | |
9 | 7, 8 | mpgbir 1873 | . . 3 ⊢ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) |
10 | df-ral 3053 | . . 3 ⊢ (∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) ↔ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
11 | 9, 10 | mpbir 221 | . 2 ⊢ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) |
12 | vex 3341 | . . 3 ⊢ 𝑛 ∈ V | |
13 | bnj1133.7 | . . 3 ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) | |
14 | 12, 13 | bnj110 31233 | . 2 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃)) → ∀𝑖 ∈ 𝑛 𝜃) |
15 | 4, 11, 14 | sylancl 697 | 1 ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1628 = wceq 1630 ∈ wcel 2137 ∀wral 3048 [wsbc 3574 ∖ cdif 3710 ∅c0 4056 {csn 4319 class class class wbr 4802 E cep 5176 Fr wfr 5220 Fn wfn 6042 ωcom 7228 ∧ w-bnj17 31059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-tr 4903 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-om 7229 df-bnj17 31060 |
This theorem is referenced by: bnj1128 31363 |
Copyright terms: Public domain | W3C validator |