Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1189 Structured version   Visualization version   GIF version

Theorem bnj1189 31203
Description: Technical lemma for bnj69 31204. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1189.1 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
bnj1189.2 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
bnj1189.3 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
Assertion
Ref Expression
bnj1189 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem bnj1189
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1189.1 . . . . . 6 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
2 n0 3964 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑥 𝑥𝐵)
32biimpi 206 . . . . . 6 (𝐵 ≠ ∅ → ∃𝑥 𝑥𝐵)
41, 3bnj837 30957 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐵)
54ancli 573 . . . 4 (𝜑 → (𝜑 ∧ ∃𝑥 𝑥𝐵))
6 19.42v 1921 . . . 4 (∃𝑥(𝜑𝑥𝐵) ↔ (𝜑 ∧ ∃𝑥 𝑥𝐵))
75, 6sylibr 224 . . 3 (𝜑 → ∃𝑥(𝜑𝑥𝐵))
8 3simpc 1080 . . . . . . . . 9 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵𝜒))
9 bnj1189.3 . . . . . . . . . 10 (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
109anbi2i 730 . . . . . . . . 9 ((𝑥𝐵𝜒) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
118, 10sylib 208 . . . . . . . 8 ((𝜑𝑥𝐵𝜒) → (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
12 19.8a 2090 . . . . . . . 8 ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1311, 12syl 17 . . . . . . 7 ((𝜑𝑥𝐵𝜒) → ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
14 df-rex 2947 . . . . . . 7 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1513, 14sylibr 224 . . . . . 6 ((𝜑𝑥𝐵𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
16153comr 1290 . . . . 5 ((𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
17163expib 1287 . . . 4 (𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
18 simp1 1081 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝜑)
19 simp2 1082 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → 𝑥𝐵)
20 rexnal 3024 . . . . . . . . . . . . . . . . . 18 (∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥 ↔ ¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
2120bicomi 214 . . . . . . . . . . . . . . . . 17 (¬ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2221, 9xchnxbir 322 . . . . . . . . . . . . . . . 16 𝜒 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
23 notnotb 304 . . . . . . . . . . . . . . . . 17 (𝑦𝑅𝑥 ↔ ¬ ¬ 𝑦𝑅𝑥)
2423rexbii 3070 . . . . . . . . . . . . . . . 16 (∃𝑦𝐵 𝑦𝑅𝑥 ↔ ∃𝑦𝐵 ¬ ¬ 𝑦𝑅𝑥)
2522, 24bitr4i 267 . . . . . . . . . . . . . . 15 𝜒 ↔ ∃𝑦𝐵 𝑦𝑅𝑥)
2625biimpi 206 . . . . . . . . . . . . . 14 𝜒 → ∃𝑦𝐵 𝑦𝑅𝑥)
2726bnj1196 30991 . . . . . . . . . . . . 13 𝜒 → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
28273ad2ant3 1104 . . . . . . . . . . . 12 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑦𝐵𝑦𝑅𝑥))
29 3anass 1059 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
3029exbii 1814 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ ∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)))
31 19.42v 1921 . . . . . . . . . . . . 13 (∃𝑦(𝑥𝐵 ∧ (𝑦𝐵𝑦𝑅𝑥)) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3230, 31bitri 264 . . . . . . . . . . . 12 (∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥) ↔ (𝑥𝐵 ∧ ∃𝑦(𝑦𝐵𝑦𝑅𝑥)))
3319, 28, 32sylanbrc 699 . . . . . . . . . . 11 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
34 bnj1189.2 . . . . . . . . . . 11 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
3533, 34bnj1198 30992 . . . . . . . . . 10 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝜓)
36 19.42v 1921 . . . . . . . . . 10 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
3718, 35, 36sylanbrc 699 . . . . . . . . 9 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦(𝜑𝜓))
381, 34bnj1190 31202 . . . . . . . . 9 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
3937, 38bnj593 30941 . . . . . . . 8 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑦𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
4039bnj937 30968 . . . . . . 7 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
4140bnj1185 30990 . . . . . 6 ((𝜑𝑥𝐵 ∧ ¬ 𝜒) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
42413comr 1290 . . . . 5 ((¬ 𝜒𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
43423expib 1287 . . . 4 𝜒 → ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
4417, 43pm2.61i 176 . . 3 ((𝜑𝑥𝐵) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
457, 44bnj593 30941 . 2 (𝜑 → ∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
46 nfre1 3034 . . 3 𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥
474619.9 2110 . 2 (∃𝑥𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
4845, 47sylib 208 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948   class class class wbr 4685   FrSe w-bnj15 30886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-bnj17 30881  df-bnj14 30883  df-bnj13 30885  df-bnj15 30887  df-bnj18 30889  df-bnj19 30891
This theorem is referenced by:  bnj69  31204
  Copyright terms: Public domain W3C validator