Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1204 Structured version   Visualization version   GIF version

Theorem bnj1204 31206
Description: Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1204.1 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
Assertion
Ref Expression
bnj1204 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem bnj1204
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1081 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → 𝑅 FrSe 𝐴)
2 ssrab2 3720 . . . . . . 7 {𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴
32a1i 11 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → {𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴)
4 simp3 1083 . . . . . . 7 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∃𝑥𝐴 ¬ 𝜑)
5 rabn0 3991 . . . . . . 7 ({𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅ ↔ ∃𝑥𝐴 ¬ 𝜑)
64, 5sylibr 224 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅)
7 nfrab1 3152 . . . . . . . 8 𝑥{𝑥𝐴 ∣ ¬ 𝜑}
87nfcrii 2786 . . . . . . 7 (𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ∀𝑥 𝑧 ∈ {𝑥𝐴 ∣ ¬ 𝜑})
98bnj1228 31205 . . . . . 6 ((𝑅 FrSe 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥𝐴 ∣ ¬ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑}∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)
101, 3, 6, 9syl3anc 1366 . . . . 5 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∃𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑}∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)
11 biid 251 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) ↔ ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥))
12 nfv 1883 . . . . . . 7 𝑥 𝑅 FrSe 𝐴
13 nfra1 2970 . . . . . . 7 𝑥𝑥𝐴 (𝜓𝜑)
14 nfre1 3034 . . . . . . 7 𝑥𝑥𝐴 ¬ 𝜑
1512, 13, 14nf3an 1871 . . . . . 6 𝑥(𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑)
1615nf5ri 2103 . . . . 5 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∀𝑥(𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑))
1710, 11, 16bnj1521 31047 . . . 4 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) → ∃𝑥((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥))
18 eqid 2651 . . . . . 6 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥𝐴 ∣ ¬ 𝜑}
1918, 11bnj1212 30996 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑥𝐴)
20 nfra1 2970 . . . . . . . 8 𝑦𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥
21 simp3 1083 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥)
2221bnj1211 30994 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦(𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥))
23 con2b 348 . . . . . . . . . . . . . . 15 ((𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥) ↔ (𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
2423albii 1787 . . . . . . . . . . . . . 14 (∀𝑦(𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝑦𝑅𝑥) ↔ ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
2522, 24sylib 208 . . . . . . . . . . . . 13 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
26 simp2 1082 . . . . . . . . . . . . 13 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑦𝑅𝑥)
27 sp 2091 . . . . . . . . . . . . 13 (∀𝑦(𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}) → (𝑦𝑅𝑥 → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑}))
2825, 26, 27sylc 65 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑})
29 simp1 1081 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝑦𝐴)
30 nfcv 2793 . . . . . . . . . . . . . . . . . 18 𝑥𝐴
3130elrabsf 3507 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑦𝐴[𝑦 / 𝑥] ¬ 𝜑))
32 vex 3234 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
33 sbcng 3509 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ V → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑))
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . 18 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
3534anbi2i 730 . . . . . . . . . . . . . . . . 17 ((𝑦𝐴[𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
3631, 35bitri 264 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
3736notbii 309 . . . . . . . . . . . . . . 15 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ ¬ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
38 imnan 437 . . . . . . . . . . . . . . 15 ((𝑦𝐴 → ¬ ¬ [𝑦 / 𝑥]𝜑) ↔ ¬ (𝑦𝐴 ∧ ¬ [𝑦 / 𝑥]𝜑))
3937, 38sylbb2 228 . . . . . . . . . . . . . 14 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → (𝑦𝐴 → ¬ ¬ [𝑦 / 𝑥]𝜑))
4039imp 444 . . . . . . . . . . . . 13 ((¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ 𝑦𝐴) → ¬ ¬ [𝑦 / 𝑥]𝜑)
4140notnotrd 128 . . . . . . . . . . . 12 ((¬ 𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ 𝑦𝐴) → [𝑦 / 𝑥]𝜑)
4228, 29, 41syl2anc 694 . . . . . . . . . . 11 ((𝑦𝐴𝑦𝑅𝑥 ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑)
43423expa 1284 . . . . . . . . . 10 (((𝑦𝐴𝑦𝑅𝑥) ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑)
4443expcom 450 . . . . . . . . 9 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → ((𝑦𝐴𝑦𝑅𝑥) → [𝑦 / 𝑥]𝜑))
4544expd 451 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → (𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑)))
4620, 45ralrimi 2986 . . . . . . 7 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
47 bnj1204.1 . . . . . . 7 (𝜓 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜑))
4846, 47sylibr 224 . . . . . 6 (∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥𝜓)
49483ad2ant3 1104 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝜓)
50 simp12 1112 . . . . 5 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ∀𝑥𝐴 (𝜓𝜑))
51 simp3 1083 . . . . . . 7 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 (𝜓𝜑))
5251bnj1211 30994 . . . . . 6 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥(𝑥𝐴 → (𝜓𝜑)))
53 simp1 1081 . . . . . 6 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → 𝑥𝐴)
54 simp2 1082 . . . . . 6 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → 𝜓)
55 sp 2091 . . . . . 6 (∀𝑥(𝑥𝐴 → (𝜓𝜑)) → (𝑥𝐴 → (𝜓𝜑)))
5652, 53, 54, 55syl3c 66 . . . . 5 ((𝑥𝐴𝜓 ∧ ∀𝑥𝐴 (𝜓𝜑)) → 𝜑)
5719, 49, 50, 56syl3anc 1366 . . . 4 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → 𝜑)
58 rabid 3145 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑥𝐴 ∧ ¬ 𝜑))
5958simprbi 479 . . . . 5 (𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} → ¬ 𝜑)
60593ad2ant2 1103 . . . 4 (((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑) ∧ 𝑥 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ∧ ∀𝑦 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ¬ 𝑦𝑅𝑥) → ¬ 𝜑)
6117, 57, 60bnj1304 31016 . . 3 ¬ (𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 ¬ 𝜑)
6261bnj1224 30998 . 2 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ¬ ∃𝑥𝐴 ¬ 𝜑)
63 dfral2 3023 . 2 (∀𝑥𝐴 𝜑 ↔ ¬ ∃𝑥𝐴 ¬ 𝜑)
6462, 63sylibr 224 1 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜓𝜑)) → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054  wal 1521  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  [wsbc 3468  wss 3607  c0 3948   class class class wbr 4685   FrSe w-bnj15 30886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-bnj17 30881  df-bnj14 30883  df-bnj13 30885  df-bnj15 30887  df-bnj18 30889  df-bnj19 30891
This theorem is referenced by:  bnj1417  31235
  Copyright terms: Public domain W3C validator