Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1262 Structured version   Visualization version   GIF version

Theorem bnj1262 29928
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1262.1 𝐴𝐵
bnj1262.2 (𝜑𝐶 = 𝐴)
Assertion
Ref Expression
bnj1262 (𝜑𝐶𝐵)

Proof of Theorem bnj1262
StepHypRef Expression
1 bnj1262.2 . 2 (𝜑𝐶 = 𝐴)
2 bnj1262.1 . 2 𝐴𝐵
31, 2syl6eqss 3617 1 (𝜑𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wss 3539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-in 3546  df-ss 3553
This theorem is referenced by:  bnj229  30001  bnj1128  30105  bnj1145  30108
  Copyright terms: Public domain W3C validator