Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1286 Structured version   Visualization version   GIF version

Theorem bnj1286 30830
 Description: Technical lemma for bnj60 30873. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1286.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1286.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1286.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1286.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1286.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1286.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1286.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
Assertion
Ref Expression
bnj1286 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷)
Distinct variable groups:   𝐴,𝑑,𝑓   𝐵,𝑓,𝑔   𝐵,,𝑓   𝑥,𝐷   𝑓,𝐺,𝑔   ,𝐺   𝑅,𝑑,𝑓   𝑔,𝑌   ,𝑌   𝑔,𝑑,𝑥,𝑓   ,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑔,)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑦,𝑓,𝑔,,𝑑)   𝑅(𝑥,𝑦,𝑔,)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1286
StepHypRef Expression
1 bnj1286.7 . . . . 5 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
2 bnj1286.1 . . . . . . . . 9 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
3 bnj1286.2 . . . . . . . . 9 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1286.3 . . . . . . . . 9 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
5 bnj1286.4 . . . . . . . . 9 𝐷 = (dom 𝑔 ∩ dom )
6 bnj1286.5 . . . . . . . . 9 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
7 bnj1286.6 . . . . . . . . 9 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
82, 3, 4, 5, 6, 7, 1bnj1256 30826 . . . . . . . 8 (𝜑 → ∃𝑑𝐵 𝑔 Fn 𝑑)
98bnj1196 30608 . . . . . . 7 (𝜑 → ∃𝑑(𝑑𝐵𝑔 Fn 𝑑))
102bnj1517 30663 . . . . . . . . 9 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
1110adantr 481 . . . . . . . 8 ((𝑑𝐵𝑔 Fn 𝑑) → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
12 fndm 5953 . . . . . . . . . 10 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
13 sseq2 3611 . . . . . . . . . . 11 (dom 𝑔 = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1413raleqbi1dv 3138 . . . . . . . . . 10 (dom 𝑔 = 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1512, 14syl 17 . . . . . . . . 9 (𝑔 Fn 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1615adantl 482 . . . . . . . 8 ((𝑑𝐵𝑔 Fn 𝑑) → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1711, 16mpbird 247 . . . . . . 7 ((𝑑𝐵𝑔 Fn 𝑑) → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
189, 17bnj593 30558 . . . . . 6 (𝜑 → ∃𝑑𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
1918bnj937 30585 . . . . 5 (𝜑 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
201, 19bnj835 30572 . . . 4 (𝜓 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
216bnj21 30526 . . . . . . 7 𝐸𝐷
225bnj1292 30629 . . . . . . 7 𝐷 ⊆ dom 𝑔
2321, 22sstri 3596 . . . . . 6 𝐸 ⊆ dom 𝑔
2423sseli 3583 . . . . 5 (𝑥𝐸𝑥 ∈ dom 𝑔)
251, 24bnj836 30573 . . . 4 (𝜓𝑥 ∈ dom 𝑔)
2620, 25bnj1294 30631 . . 3 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
272, 3, 4, 5, 6, 7, 1bnj1259 30827 . . . . . . . 8 (𝜑 → ∃𝑑𝐵 Fn 𝑑)
2827bnj1196 30608 . . . . . . 7 (𝜑 → ∃𝑑(𝑑𝐵 Fn 𝑑))
2910adantr 481 . . . . . . . 8 ((𝑑𝐵 Fn 𝑑) → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
30 fndm 5953 . . . . . . . . . 10 ( Fn 𝑑 → dom = 𝑑)
31 sseq2 3611 . . . . . . . . . . 11 (dom = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3231raleqbi1dv 3138 . . . . . . . . . 10 (dom = 𝑑 → (∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3330, 32syl 17 . . . . . . . . 9 ( Fn 𝑑 → (∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3433adantl 482 . . . . . . . 8 ((𝑑𝐵 Fn 𝑑) → (∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3529, 34mpbird 247 . . . . . . 7 ((𝑑𝐵 Fn 𝑑) → ∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
3628, 35bnj593 30558 . . . . . 6 (𝜑 → ∃𝑑𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
3736bnj937 30585 . . . . 5 (𝜑 → ∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
381, 37bnj835 30572 . . . 4 (𝜓 → ∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
395bnj1293 30630 . . . . . . 7 𝐷 ⊆ dom
4021, 39sstri 3596 . . . . . 6 𝐸 ⊆ dom
4140sseli 3583 . . . . 5 (𝑥𝐸𝑥 ∈ dom )
421, 41bnj836 30573 . . . 4 (𝜓𝑥 ∈ dom )
4338, 42bnj1294 30631 . . 3 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom )
4426, 43ssind 3820 . 2 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ (dom 𝑔 ∩ dom ))
4544, 5syl6sseqr 3636 1 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  {cab 2607   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  {crab 2911   ∩ cin 3558   ⊆ wss 3559  ⟨cop 4159   class class class wbr 4618  dom cdm 5079   ↾ cres 5081   Fn wfn 5847  ‘cfv 5852   ∧ w-bnj17 30494   predc-bnj14 30496   FrSe w-bnj15 30500 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-res 5091  df-iota 5815  df-fun 5854  df-fn 5855  df-fv 5860  df-bnj17 30495 This theorem is referenced by:  bnj1280  30831
 Copyright terms: Public domain W3C validator