Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1299 Structured version   Visualization version   GIF version

Theorem bnj1299 30650
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1299.1 (𝜑 → ∃𝑥𝐴 (𝜓𝜒))
Assertion
Ref Expression
bnj1299 (𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem bnj1299
StepHypRef Expression
1 bnj1299.1 . 2 (𝜑 → ∃𝑥𝐴 (𝜓𝜒))
2 bnj1239 30637 . 2 (∃𝑥𝐴 (𝜓𝜒) → ∃𝑥𝐴 𝜓)
31, 2syl 17 1 (𝜑 → ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wrex 2909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-ral 2913  df-rex 2914
This theorem is referenced by:  bnj1497  30889  bnj1498  30890  bnj1501  30896
  Copyright terms: Public domain W3C validator