Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1316 Structured version   Visualization version   GIF version

Theorem bnj1316 31017
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1316.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
bnj1316.2 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
Assertion
Ref Expression
bnj1316 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem bnj1316
StepHypRef Expression
1 bnj1316.1 . . . . 5 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21nfcii 2784 . . . 4 𝑥𝐴
3 bnj1316.2 . . . . 5 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
43nfcii 2784 . . . 4 𝑥𝐵
52, 4nfeq 2805 . . 3 𝑥 𝐴 = 𝐵
65nf5ri 2103 . 2 (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵)
76bnj956 30973 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1521   = wceq 1523   ∈ wcel 2030  ∪ ciun 4552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-iun 4554 This theorem is referenced by:  bnj1000  31137  bnj1318  31219
 Copyright terms: Public domain W3C validator