Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1408 Structured version   Visualization version   GIF version

Theorem bnj1408 30812
Description: Technical lemma for bnj1414 30813. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1408.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
bnj1408.2 𝐶 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
bnj1408.3 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1408.4 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
Assertion
Ref Expression
bnj1408 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜃(𝑦)   𝜏(𝑦)   𝐵(𝑦)   𝐶(𝑦)

Proof of Theorem bnj1408
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1408.3 . . . 4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
21biimpri 218 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝜃)
3 bnj1408.1 . . . . 5 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
43bnj1413 30811 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
5 simplll 797 . . . . . . . . 9 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
6 bnj213 30660 . . . . . . . . . . 11 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐴
76sseli 3579 . . . . . . . . . 10 (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) → 𝑧𝐴)
87adantl 482 . . . . . . . . 9 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → 𝑧𝐴)
9 bnj906 30708 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑧𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
105, 8, 9syl2anc 692 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
11 bnj1318 30801 . . . . . . . . . . 11 (𝑦 = 𝑧 → trCl(𝑦, 𝐴, 𝑅) = trCl(𝑧, 𝐴, 𝑅))
1211ssiun2s 4530 . . . . . . . . . 10 (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
13 ssun4 3757 . . . . . . . . . . 11 ( trCl(𝑧, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
1413, 3syl6sseqr 3631 . . . . . . . . . 10 ( trCl(𝑧, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
1512, 14syl 17 . . . . . . . . 9 (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
1615adantl 482 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
1710, 16sstrd 3593 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 ∈ pred(𝑋, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
18 simpr 477 . . . . . . . . . . 11 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
1918bnj1405 30615 . . . . . . . . . 10 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦 ∈ pred (𝑋, 𝐴, 𝑅)𝑧 ∈ trCl(𝑦, 𝐴, 𝑅))
20 biid 251 . . . . . . . . . 10 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) ↔ ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)))
21 nfv 1840 . . . . . . . . . . . . 13 𝑦(𝑅 FrSe 𝐴𝑋𝐴)
22 nfcv 2761 . . . . . . . . . . . . . . . 16 𝑦 pred(𝑋, 𝐴, 𝑅)
23 nfiu1 4516 . . . . . . . . . . . . . . . 16 𝑦 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)
2422, 23nfun 3747 . . . . . . . . . . . . . . 15 𝑦( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
253, 24nfcxfr 2759 . . . . . . . . . . . . . 14 𝑦𝐵
2625nfcri 2755 . . . . . . . . . . . . 13 𝑦 𝑧𝐵
2721, 26nfan 1825 . . . . . . . . . . . 12 𝑦((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵)
2823nfcri 2755 . . . . . . . . . . . 12 𝑦 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)
2927, 28nfan 1825 . . . . . . . . . . 11 𝑦(((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
3029nf5ri 2063 . . . . . . . . . 10 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∀𝑦(((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
3119, 20, 30bnj1521 30629 . . . . . . . . 9 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)))
32 simplll 797 . . . . . . . . . . . . 13 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
33323ad2ant1 1080 . . . . . . . . . . . 12 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
34 bnj1147 30770 . . . . . . . . . . . . 13 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
35 simp3 1061 . . . . . . . . . . . . 13 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅))
3634, 35bnj1213 30577 . . . . . . . . . . . 12 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑧𝐴)
3733, 36, 9syl2anc 692 . . . . . . . . . . 11 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
38 simp2 1060 . . . . . . . . . . . . 13 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ pred(𝑋, 𝐴, 𝑅))
396, 38bnj1213 30577 . . . . . . . . . . . 12 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝐴)
40 bnj1125 30768 . . . . . . . . . . . 12 ((𝑅 FrSe 𝐴𝑦𝐴𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
4133, 39, 35, 40syl3anc 1323 . . . . . . . . . . 11 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
4237, 41sstrd 3593 . . . . . . . . . 10 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
43 ssiun2 4529 . . . . . . . . . . . 12 (𝑦 ∈ pred(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
44433ad2ant2 1081 . . . . . . . . . . 11 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
45 ssun4 3757 . . . . . . . . . . . 12 ( trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
4645, 3syl6sseqr 3631 . . . . . . . . . . 11 ( trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
4744, 46syl 17 . . . . . . . . . 10 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐵)
4842, 47sstrd 3593 . . . . . . . . 9 (((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∧ 𝑦 ∈ pred(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
4931, 48bnj593 30523 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → ∃𝑦 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
50 nfcv 2761 . . . . . . . . . 10 𝑦 pred(𝑧, 𝐴, 𝑅)
5150, 25nfss 3576 . . . . . . . . 9 𝑦 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵
5251nf5ri 2063 . . . . . . . 8 ( pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵 → ∀𝑦 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
5349, 52bnj1397 30613 . . . . . . 7 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) ∧ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
54 simpr 477 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) → 𝑧𝐵)
553bnj1138 30567 . . . . . . . 8 (𝑧𝐵 ↔ (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5654, 55sylib 208 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) → (𝑧 ∈ pred(𝑋, 𝐴, 𝑅) ∨ 𝑧 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5717, 53, 56mpjaodan 826 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑧𝐵) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
5857ralrimiva 2960 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑧𝐵 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
59 df-bnj19 30470 . . . . 5 ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑧𝐵 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐵)
6058, 59sylibr 224 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
613bnj931 30549 . . . . 5 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵
6261a1i 11 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
63 bnj1408.4 . . . 4 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
644, 60, 62, 63syl3anbrc 1244 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝜏)
651, 63bnj1124 30764 . . 3 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
662, 64, 65syl2anc 692 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
67 bnj906 30708 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
68 iunss1 4498 . . . . 5 ( pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
69 unss2 3762 . . . . 5 ( 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
7067, 68, 693syl 18 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
71 bnj1408.2 . . . 4 𝐶 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
7270, 3, 713sstr4g 3625 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵𝐶)
73 biid 251 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴))
74 biid 251 . . . 4 ((𝐶 ∈ V ∧ TrFo(𝐶, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐶) ↔ (𝐶 ∈ V ∧ TrFo(𝐶, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐶))
7571, 73, 74bnj1136 30773 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐶)
7672, 75sseqtr4d 3621 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ⊆ trCl(𝑋, 𝐴, 𝑅))
7766, 76eqssd 3600 1 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cun 3553  wss 3555   ciun 4485   predc-bnj14 30461   FrSe w-bnj15 30465   trClc-bnj18 30467   TrFow-bnj19 30469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-reg 8441  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-1o 7505  df-bnj17 30460  df-bnj14 30462  df-bnj13 30464  df-bnj15 30466  df-bnj18 30468  df-bnj19 30470
This theorem is referenced by:  bnj1414  30813
  Copyright terms: Public domain W3C validator