Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1413 Structured version   Visualization version   GIF version

Theorem bnj1413 31229
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1413.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1413 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem bnj1413
StepHypRef Expression
1 bnj1148 31190 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)
2 bnj893 31124 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
3 simp1 1081 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
4 bnj1127 31185 . . . . . . . 8 (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑦𝐴)
543ad2ant3 1104 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑦𝐴)
6 bnj893 31124 . . . . . . 7 ((𝑅 FrSe 𝐴𝑦𝐴) → trCl(𝑦, 𝐴, 𝑅) ∈ V)
73, 5, 6syl2anc 694 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ∈ V)
873expia 1286 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ∈ V))
98ralrimiv 2994 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V)
10 iunexg 7185 . . . 4 (( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V)
112, 9, 10syl2anc 694 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V)
121, 11bnj1149 30989 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∈ V)
13 bnj1413.1 . . 3 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
14 bnj906 31126 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
15 iunss1 4564 . . . 4 ( pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
16 unss2 3817 . . . 4 ( 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
1714, 15, 163syl 18 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
1813, 17syl5eqss 3682 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
1912, 18ssexd 4838 1 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cun 3605  wss 3607   ciun 4552   predc-bnj14 30882   FrSe w-bnj15 30886   trClc-bnj18 30888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-bnj17 30881  df-bnj14 30883  df-bnj13 30885  df-bnj15 30887  df-bnj18 30889
This theorem is referenced by:  bnj1408  31230
  Copyright terms: Public domain W3C validator