![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1413 | Structured version Visualization version GIF version |
Description: Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1413.1 | ⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
bnj1413 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1148 31190 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V) | |
2 | bnj893 31124 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V) | |
3 | simp1 1081 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴) | |
4 | bnj1127 31185 | . . . . . . . 8 ⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑦 ∈ 𝐴) | |
5 | 4 | 3ad2ant3 1104 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑦 ∈ 𝐴) |
6 | bnj893 31124 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴) → trCl(𝑦, 𝐴, 𝑅) ∈ V) | |
7 | 3, 5, 6 | syl2anc 694 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ∈ V) |
8 | 7 | 3expia 1286 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ∈ V)) |
9 | 8 | ralrimiv 2994 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) |
10 | iunexg 7185 | . . . 4 ⊢ (( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) → ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) | |
11 | 2, 9, 10 | syl2anc 694 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) |
12 | 1, 11 | bnj1149 30989 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∈ V) |
13 | bnj1413.1 | . . 3 ⊢ 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
14 | bnj906 31126 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) | |
15 | iunss1 4564 | . . . 4 ⊢ ( pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) | |
16 | unss2 3817 | . . . 4 ⊢ (∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) → ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) | |
17 | 14, 15, 16 | 3syl 18 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ pred (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
18 | 13, 17 | syl5eqss 3682 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ⊆ ( pred(𝑋, 𝐴, 𝑅) ∪ ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))) |
19 | 12, 18 | ssexd 4838 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 ∪ ciun 4552 predc-bnj14 30882 FrSe w-bnj15 30886 trClc-bnj18 30888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-reg 8538 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-1o 7605 df-bnj17 30881 df-bnj14 30883 df-bnj13 30885 df-bnj15 30887 df-bnj18 30889 |
This theorem is referenced by: bnj1408 31230 |
Copyright terms: Public domain | W3C validator |