![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1423 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31437. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1423.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1423.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1423.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1423.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1423.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1423.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1423.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1423.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1423.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1423.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1423.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1423.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1423.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
bnj1423.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
bnj1423.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
bnj1423.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj1423 | ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1423.1 | . . . 4 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj1423.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj1423.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1423.4 | . . . 4 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
5 | bnj1423.5 | . . . 4 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
6 | bnj1423.6 | . . . 4 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
7 | bnj1423.7 | . . . 4 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
8 | bnj1423.8 | . . . 4 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
9 | bnj1423.9 | . . . 4 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
10 | bnj1423.10 | . . . 4 ⊢ 𝑃 = ∪ 𝐻 | |
11 | bnj1423.11 | . . . 4 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
12 | bnj1423.12 | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
13 | bnj1423.13 | . . . 4 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
14 | bnj1423.14 | . . . 4 ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | |
15 | bnj1423.15 | . . . 4 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
16 | bnj1423.16 | . . . 4 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
17 | biid 251 | . . . 4 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
18 | biid 251 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) ↔ ((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥})) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | bnj1442 31424 | . . 3 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
20 | biid 251 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) | |
21 | biid 251 | . . . 4 ⊢ ((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ↔ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) | |
22 | biid 251 | . . . 4 ⊢ (((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
23 | biid 251 | . . . 4 ⊢ ((((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) | |
24 | eqid 2760 | . . . 4 ⊢ 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24 | bnj1450 31425 | . . 3 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
26 | 14 | bnj1424 31216 | . . . 4 ⊢ (𝑧 ∈ 𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
27 | 26 | adantl 473 | . . 3 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
28 | 19, 25, 27 | mpjaodan 862 | . 2 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
29 | 28 | ralrimiva 3104 | 1 ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 {cab 2746 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 {crab 3054 [wsbc 3576 ∪ cun 3713 ⊆ wss 3715 ∅c0 4058 {csn 4321 〈cop 4327 ∪ cuni 4588 class class class wbr 4804 dom cdm 5266 ↾ cres 5268 Fn wfn 6044 ‘cfv 6049 ∧ w-bnj17 31061 predc-bnj14 31063 FrSe w-bnj15 31067 trClc-bnj18 31069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-reg 8662 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-1o 7729 df-bnj17 31062 df-bnj14 31064 df-bnj13 31066 df-bnj15 31068 df-bnj18 31070 |
This theorem is referenced by: bnj1312 31433 |
Copyright terms: Public domain | W3C validator |