Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1454 Structured version   Visualization version   GIF version

Theorem bnj1454 30612
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1454.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
bnj1454 (𝐵 ∈ V → (𝐵𝐴[𝐵 / 𝑥]𝜑))

Proof of Theorem bnj1454
StepHypRef Expression
1 df-sbc 3423 . . 3 ([𝐵 / 𝑥]𝜑𝐵 ∈ {𝑥𝜑})
21a1i 11 . 2 (𝐵 ∈ V → ([𝐵 / 𝑥]𝜑𝐵 ∈ {𝑥𝜑}))
3 bnj1454.1 . . 3 𝐴 = {𝑥𝜑}
43eleq2i 2696 . 2 (𝐵𝐴𝐵 ∈ {𝑥𝜑})
52, 4syl6rbbr 279 1 (𝐵 ∈ V → (𝐵𝐴[𝐵 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1992  {cab 2612  Vcvv 3191  [wsbc 3422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-ext 2606 This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-cleq 2619  df-clel 2622  df-sbc 3423 This theorem is referenced by:  bnj1452  30820  bnj1463  30823
 Copyright terms: Public domain W3C validator