Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj149 Structured version   Visualization version   GIF version

Theorem bnj149 32142
Description: Technical lemma for bnj151 32144. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj149.1 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj149.2 (𝜁0 ↔ (𝑓 Fn 1o𝜑′𝜓′))
bnj149.3 (𝜁1[𝑔 / 𝑓]𝜁0)
bnj149.4 (𝜑1[𝑔 / 𝑓]𝜑′)
bnj149.5 (𝜓1[𝑔 / 𝑓]𝜓′)
bnj149.6 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj149 𝜃1
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝜁1   𝑔,𝜁0
Allowed substitution hints:   𝜑′(𝑥,𝑓,𝑔)   𝜓′(𝑥,𝑓,𝑔)   𝜁0(𝑥,𝑓)   𝜑1(𝑥,𝑓,𝑔)   𝜓1(𝑥,𝑓,𝑔)   𝜃1(𝑥,𝑓,𝑔)   𝜁1(𝑥,𝑔)

Proof of Theorem bnj149
StepHypRef Expression
1 simpr1 1190 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn 1o)
2 df1o2 8110 . . . . . . . . 9 1o = {∅}
32fneq2i 6445 . . . . . . . 8 (𝑓 Fn 1o𝑓 Fn {∅})
41, 3sylib 220 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 Fn {∅})
5 simpr2 1191 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝜑′)
6 bnj149.6 . . . . . . . . . 10 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
75, 6sylib 220 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
8 fvex 6677 . . . . . . . . . 10 (𝑓‘∅) ∈ V
98elsn 4575 . . . . . . . . 9 ((𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
107, 9sylibr 236 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
11 0ex 5203 . . . . . . . . 9 ∅ ∈ V
12 fveq2 6664 . . . . . . . . . 10 (𝑔 = ∅ → (𝑓𝑔) = (𝑓‘∅))
1312eleq1d 2897 . . . . . . . . 9 (𝑔 = ∅ → ((𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)}))
1411, 13ralsn 4612 . . . . . . . 8 (∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓‘∅) ∈ { pred(𝑥, 𝐴, 𝑅)})
1510, 14sylibr 236 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)})
16 ffnfv 6876 . . . . . . 7 (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ (𝑓 Fn {∅} ∧ ∀𝑔 ∈ {∅} (𝑓𝑔) ∈ { pred(𝑥, 𝐴, 𝑅)}))
174, 15, 16sylanbrc 585 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)})
18 bnj93 32130 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
1918adantr 483 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → pred(𝑥, 𝐴, 𝑅) ∈ V)
20 fsng 6893 . . . . . . 7 ((∅ ∈ V ∧ pred(𝑥, 𝐴, 𝑅) ∈ V) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2111, 19, 20sylancr 589 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → (𝑓:{∅}⟶{ pred(𝑥, 𝐴, 𝑅)} ↔ 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2217, 21mpbid 234 . . . . 5 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ (𝑓 Fn 1o𝜑′𝜓′)) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
2322ex 415 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → ((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
2423alrimiv 1924 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}))
25 mo2icl 3704 . . 3 (∀𝑓((𝑓 Fn 1o𝜑′𝜓′) → 𝑓 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
2624, 25syl 17 . 2 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′))
27 bnj149.1 . 2 (𝜃1 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃*𝑓(𝑓 Fn 1o𝜑′𝜓′)))
2826, 27mpbir 233 1 𝜃1
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wcel 2110  ∃*wmo 2616  wral 3138  Vcvv 3494  [wsbc 3771  c0 4290  {csn 4560  cop 4566   Fn wfn 6344  wf 6345  cfv 6349  1oc1o 8089   predc-bnj14 31953   FrSe w-bnj15 31957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-1o 8096  df-bnj13 31956  df-bnj15 31958
This theorem is referenced by:  bnj151  32144
  Copyright terms: Public domain W3C validator