Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1498 Structured version   Visualization version   GIF version

Theorem bnj1498 30864
Description: Technical lemma for bnj60 30865. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1498.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1498.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1498.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1498.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj1498 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1498
Dummy variables 𝑡 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4495 . . . . . . 7 (𝑧 𝑓𝐶 dom 𝑓 ↔ ∃𝑓𝐶 𝑧 ∈ dom 𝑓)
2 bnj1498.3 . . . . . . . . . . . . . . . 16 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
32bnj1436 30645 . . . . . . . . . . . . . . 15 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
43bnj1299 30624 . . . . . . . . . . . . . 14 (𝑓𝐶 → ∃𝑑𝐵 𝑓 Fn 𝑑)
5 fndm 5953 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
64, 5bnj31 30520 . . . . . . . . . . . . 13 (𝑓𝐶 → ∃𝑑𝐵 dom 𝑓 = 𝑑)
76bnj1196 30600 . . . . . . . . . . . 12 (𝑓𝐶 → ∃𝑑(𝑑𝐵 ∧ dom 𝑓 = 𝑑))
8 bnj1498.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
98bnj1436 30645 . . . . . . . . . . . . . 14 (𝑑𝐵 → (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
109simpld 475 . . . . . . . . . . . . 13 (𝑑𝐵𝑑𝐴)
1110anim1i 591 . . . . . . . . . . . 12 ((𝑑𝐵 ∧ dom 𝑓 = 𝑑) → (𝑑𝐴 ∧ dom 𝑓 = 𝑑))
127, 11bnj593 30550 . . . . . . . . . . 11 (𝑓𝐶 → ∃𝑑(𝑑𝐴 ∧ dom 𝑓 = 𝑑))
13 sseq1 3610 . . . . . . . . . . . 12 (dom 𝑓 = 𝑑 → (dom 𝑓𝐴𝑑𝐴))
1413biimparc 504 . . . . . . . . . . 11 ((𝑑𝐴 ∧ dom 𝑓 = 𝑑) → dom 𝑓𝐴)
1512, 14bnj593 30550 . . . . . . . . . 10 (𝑓𝐶 → ∃𝑑dom 𝑓𝐴)
1615bnj937 30577 . . . . . . . . 9 (𝑓𝐶 → dom 𝑓𝐴)
1716sselda 3587 . . . . . . . 8 ((𝑓𝐶𝑧 ∈ dom 𝑓) → 𝑧𝐴)
1817rexlimiva 3022 . . . . . . 7 (∃𝑓𝐶 𝑧 ∈ dom 𝑓𝑧𝐴)
191, 18sylbi 207 . . . . . 6 (𝑧 𝑓𝐶 dom 𝑓𝑧𝐴)
202bnj1317 30627 . . . . . . 7 (𝑤𝐶 → ∀𝑓 𝑤𝐶)
2120bnj1400 30641 . . . . . 6 dom 𝐶 = 𝑓𝐶 dom 𝑓
2219, 21eleq2s 2716 . . . . 5 (𝑧 ∈ dom 𝐶𝑧𝐴)
23 bnj1498.4 . . . . . 6 𝐹 = 𝐶
2423dmeqi 5290 . . . . 5 dom 𝐹 = dom 𝐶
2522, 24eleq2s 2716 . . . 4 (𝑧 ∈ dom 𝐹𝑧𝐴)
2625ssriv 3591 . . 3 dom 𝐹𝐴
2726a1i 11 . 2 (𝑅 FrSe 𝐴 → dom 𝐹𝐴)
28 bnj1498.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
298, 28, 2bnj1493 30862 . . . . . . 7 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
30 vsnid 4185 . . . . . . . . . . 11 𝑥 ∈ {𝑥}
31 elun1 3763 . . . . . . . . . . 11 (𝑥 ∈ {𝑥} → 𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
3230, 31ax-mp 5 . . . . . . . . . 10 𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
33 eleq2 2687 . . . . . . . . . 10 (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → (𝑥 ∈ dom 𝑓𝑥 ∈ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
3432, 33mpbiri 248 . . . . . . . . 9 (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → 𝑥 ∈ dom 𝑓)
3534reximi 3006 . . . . . . . 8 (∃𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
3635ralimi 2947 . . . . . . 7 (∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) → ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
3729, 36syl 17 . . . . . 6 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
38 eliun 4495 . . . . . . 7 (𝑥 𝑓𝐶 dom 𝑓 ↔ ∃𝑓𝐶 𝑥 ∈ dom 𝑓)
3938ralbii 2975 . . . . . 6 (∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓 ↔ ∀𝑥𝐴𝑓𝐶 𝑥 ∈ dom 𝑓)
4037, 39sylibr 224 . . . . 5 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓)
41 nfcv 2761 . . . . . 6 𝑥𝐴
428bnj1309 30825 . . . . . . . . 9 (𝑡𝐵 → ∀𝑥 𝑡𝐵)
432, 42bnj1307 30826 . . . . . . . 8 (𝑡𝐶 → ∀𝑥 𝑡𝐶)
4443nfcii 2752 . . . . . . 7 𝑥𝐶
45 nfcv 2761 . . . . . . 7 𝑥dom 𝑓
4644, 45nfiun 4519 . . . . . 6 𝑥 𝑓𝐶 dom 𝑓
4741, 46dfss3f 3579 . . . . 5 (𝐴 𝑓𝐶 dom 𝑓 ↔ ∀𝑥𝐴 𝑥 𝑓𝐶 dom 𝑓)
4840, 47sylibr 224 . . . 4 (𝑅 FrSe 𝐴𝐴 𝑓𝐶 dom 𝑓)
4948, 21syl6sseqr 3636 . . 3 (𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐶)
5049, 24syl6sseqr 3636 . 2 (𝑅 FrSe 𝐴𝐴 ⊆ dom 𝐹)
5127, 50eqssd 3604 1 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {cab 2607  wral 2907  wrex 2908  cun 3557  wss 3559  {csn 4153  cop 4159   cuni 4407   ciun 4490  dom cdm 5079  cres 5081   Fn wfn 5847  cfv 5852   predc-bnj14 30488   FrSe w-bnj15 30492   trClc-bnj18 30494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-reg 8448  ax-inf2 8489
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-1o 7512  df-bnj17 30487  df-bnj14 30489  df-bnj13 30491  df-bnj15 30493  df-bnj18 30495  df-bnj19 30497
This theorem is referenced by:  bnj60  30865
  Copyright terms: Public domain W3C validator