Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj150 Structured version   Visualization version   GIF version

Theorem bnj150 32150
Description: Technical lemma for bnj151 32151. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj150.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj150.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj150.3 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj150.4 (𝜑′[1o / 𝑛]𝜑)
bnj150.5 (𝜓′[1o / 𝑛]𝜓)
bnj150.6 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
bnj150.7 (𝜁′[1o / 𝑛]𝜁)
bnj150.8 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj150.9 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj150.10 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj150.11 (𝜁″[𝐹 / 𝑓]𝜁′)
Assertion
Ref Expression
bnj150 𝜃0
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑛,𝑥   𝑓,𝜁″   𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝐹(𝑥,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜑″(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜁″(𝑥,𝑦,𝑖,𝑛)   𝜃0(𝑥,𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj150
StepHypRef Expression
1 bnj150.8 . . . 4 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
21bnj95 32138 . . 3 𝐹 ∈ V
3 sbceq1a 3785 . . . 4 (𝑓 = 𝐹 → (𝜁′[𝐹 / 𝑓]𝜁′))
4 bnj150.11 . . . 4 (𝜁″[𝐹 / 𝑓]𝜁′)
53, 4syl6bbr 291 . . 3 (𝑓 = 𝐹 → (𝜁′𝜁″))
6 0ex 5213 . . . . . . . . 9 ∅ ∈ V
7 bnj93 32137 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V)
8 funsng 6407 . . . . . . . . 9 ((∅ ∈ V ∧ pred(𝑥, 𝐴, 𝑅) ∈ V) → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
96, 7, 8sylancr 589 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
101funeqi 6378 . . . . . . . 8 (Fun 𝐹 ↔ Fun {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩})
119, 10sylibr 236 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → Fun 𝐹)
121bnj96 32139 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → dom 𝐹 = 1o)
1311, 12bnj1422 32111 . . . . . 6 ((𝑅 FrSe 𝐴𝑥𝐴) → 𝐹 Fn 1o)
141bnj97 32140 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
15 bnj150.1 . . . . . . . 8 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
16 bnj150.4 . . . . . . . 8 (𝜑′[1o / 𝑛]𝜑)
17 bnj150.9 . . . . . . . 8 (𝜑″[𝐹 / 𝑓]𝜑′)
1815, 16, 17, 1bnj125 32146 . . . . . . 7 (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
1914, 18sylibr 236 . . . . . 6 ((𝑅 FrSe 𝐴𝑥𝐴) → 𝜑″)
2013, 19jca 514 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″))
21 bnj98 32141 . . . . . 6 𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
22 bnj150.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
23 bnj150.5 . . . . . . 7 (𝜓′[1o / 𝑛]𝜓)
24 bnj150.10 . . . . . . 7 (𝜓″[𝐹 / 𝑓]𝜓′)
2522, 23, 24, 1bnj126 32147 . . . . . 6 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
2621, 25mpbir 233 . . . . 5 𝜓″
27 df-3an 1085 . . . . 5 ((𝐹 Fn 1o𝜑″𝜓″) ↔ ((𝐹 Fn 1o𝜑″) ∧ 𝜓″))
2820, 26, 27sylanblrc 592 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″))
29 bnj150.3 . . . . . 6 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
30 bnj150.7 . . . . . 6 (𝜁′[1o / 𝑛]𝜁)
3129, 30, 16, 23bnj121 32144 . . . . 5 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
321, 17, 24, 4, 31bnj124 32145 . . . 4 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1o𝜑″𝜓″)))
3328, 32mpbir 233 . . 3 𝜁″
342, 5, 33ceqsexv2d 3544 . 2 𝑓𝜁′
35 bnj150.6 . . . 4 (𝜃0 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
36 19.37v 1998 . . . 4 (∃𝑓((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 1o𝜑′𝜓′)))
3735, 36bitr4i 280 . . 3 (𝜃0 ↔ ∃𝑓((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1o𝜑′𝜓′)))
3837, 31bnj133 31999 . 2 (𝜃0 ↔ ∃𝑓𝜁′)
3934, 38mpbir 233 1 𝜃0
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3140  Vcvv 3496  [wsbc 3774  c0 4293  {csn 4569  cop 4575   ciun 4921  suc csuc 6195  Fun wfun 6351   Fn wfn 6352  cfv 6357  ωcom 7582  1oc1o 8097   predc-bnj14 31960   FrSe w-bnj15 31964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-1o 8104  df-bnj13 31963  df-bnj15 31965
This theorem is referenced by:  bnj151  32151
  Copyright terms: Public domain W3C validator