![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1517 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1517.1 | ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1517 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1517.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ 𝜓)} | |
2 | 1 | bnj1436 31036 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ∧ 𝜓)) |
3 | 2 | simprd 478 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1526 df-ex 1745 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 |
This theorem is referenced by: bnj1286 31213 bnj1450 31244 bnj1501 31261 |
Copyright terms: Public domain | W3C validator |