Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1521 Structured version   Visualization version   GIF version

Theorem bnj1521 30895
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1521.1 (𝜒 → ∃𝑥𝐵 𝜑)
bnj1521.2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
bnj1521.3 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
bnj1521 (𝜒 → ∃𝑥𝜃)

Proof of Theorem bnj1521
StepHypRef Expression
1 bnj1521.1 . . 3 (𝜒 → ∃𝑥𝐵 𝜑)
21bnj1196 30839 . 2 (𝜒 → ∃𝑥(𝑥𝐵𝜑))
3 bnj1521.2 . 2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
4 bnj1521.3 . 2 (𝜒 → ∀𝑥𝜒)
52, 3, 4bnj1345 30869 1 (𝜒 → ∃𝑥𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036  wal 1479  wex 1702  wcel 1988  wrex 2910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-12 2045
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038  df-ex 1703  df-nf 1708  df-rex 2915
This theorem is referenced by:  bnj1204  31054  bnj1311  31066  bnj1398  31076  bnj1408  31078  bnj1450  31092  bnj1312  31100  bnj1501  31109  bnj1523  31113
  Copyright terms: Public domain W3C validator