Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1523 Structured version   Visualization version   GIF version

Theorem bnj1523 31265
 Description: Technical lemma for bnj1522 31266. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1523.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1523.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1523.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1523.4 𝐹 = 𝐶
bnj1523.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
bnj1523.6 (𝜓 ↔ (𝜑𝐹𝐻))
bnj1523.7 (𝜒 ↔ (𝜓𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
bnj1523.8 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
bnj1523.9 (𝜃 ↔ (𝜒𝑦𝐷 ∧ ∀𝑧𝐷 ¬ 𝑧𝑅𝑦))
Assertion
Ref Expression
bnj1523 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑓   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝐺,𝑑,𝑓,𝑥   𝑦,𝐺   𝑥,𝐻,𝑦,𝑧   𝑅,𝑑,𝑓,𝑥   𝑦,𝑅,𝑧   𝑌,𝑑   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑧)   𝐻(𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓)

Proof of Theorem bnj1523
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1523.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
2 bnj1523.6 . . 3 (𝜓 ↔ (𝜑𝐹𝐻))
3 bnj1523.9 . . . . . . . . . . . . 13 (𝜃 ↔ (𝜒𝑦𝐷 ∧ ∀𝑧𝐷 ¬ 𝑧𝑅𝑦))
4 bnj1523.7 . . . . . . . . . . . . . 14 (𝜒 ↔ (𝜓𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
5 bnj1523.1 . . . . . . . . . . . . . . . . 17 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
6 bnj1523.2 . . . . . . . . . . . . . . . . 17 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
7 bnj1523.3 . . . . . . . . . . . . . . . . 17 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
8 bnj1523.4 . . . . . . . . . . . . . . . . 17 𝐹 = 𝐶
95, 6, 7, 8bnj60 31256 . . . . . . . . . . . . . . . 16 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
101, 9bnj835 30955 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐴)
112, 10bnj832 30954 . . . . . . . . . . . . . 14 (𝜓𝐹 Fn 𝐴)
124, 11bnj835 30955 . . . . . . . . . . . . 13 (𝜒𝐹 Fn 𝐴)
133, 12bnj835 30955 . . . . . . . . . . . 12 (𝜃𝐹 Fn 𝐴)
141simp2bi 1097 . . . . . . . . . . . . . . 15 (𝜑𝐻 Fn 𝐴)
152, 14bnj832 30954 . . . . . . . . . . . . . 14 (𝜓𝐻 Fn 𝐴)
164, 15bnj835 30955 . . . . . . . . . . . . 13 (𝜒𝐻 Fn 𝐴)
173, 16bnj835 30955 . . . . . . . . . . . 12 (𝜃𝐻 Fn 𝐴)
18 bnj213 31078 . . . . . . . . . . . . 13 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1918a1i 11 . . . . . . . . . . . 12 (𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
203simp3bi 1098 . . . . . . . . . . . . . . . . 17 (𝜃 → ∀𝑧𝐷 ¬ 𝑧𝑅𝑦)
2120bnj1211 30994 . . . . . . . . . . . . . . . 16 (𝜃 → ∀𝑧(𝑧𝐷 → ¬ 𝑧𝑅𝑦))
22 con2b 348 . . . . . . . . . . . . . . . . 17 ((𝑧𝐷 → ¬ 𝑧𝑅𝑦) ↔ (𝑧𝑅𝑦 → ¬ 𝑧𝐷))
2322albii 1787 . . . . . . . . . . . . . . . 16 (∀𝑧(𝑧𝐷 → ¬ 𝑧𝑅𝑦) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷))
2421, 23sylib 208 . . . . . . . . . . . . . . 15 (𝜃 → ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷))
25 bnj1418 31234 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → 𝑧𝑅𝑦)
2625imim1i 63 . . . . . . . . . . . . . . . 16 ((𝑧𝑅𝑦 → ¬ 𝑧𝐷) → (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2726alimi 1779 . . . . . . . . . . . . . . 15 (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷) → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2824, 27syl 17 . . . . . . . . . . . . . 14 (𝜃 → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2928bnj1142 30986 . . . . . . . . . . . . 13 (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅) ¬ 𝑧𝐷)
30 bnj1523.8 . . . . . . . . . . . . . 14 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
315bnj1309 31216 . . . . . . . . . . . . . . . . . . 19 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
327, 31bnj1307 31217 . . . . . . . . . . . . . . . . . 18 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
3332nfcii 2784 . . . . . . . . . . . . . . . . 17 𝑥𝐶
3433nfuni 4474 . . . . . . . . . . . . . . . 16 𝑥 𝐶
358, 34nfcxfr 2791 . . . . . . . . . . . . . . 15 𝑥𝐹
3635nfcrii 2786 . . . . . . . . . . . . . 14 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
3730, 36bnj1534 31049 . . . . . . . . . . . . 13 𝐷 = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
3829, 18, 37bnj1533 31048 . . . . . . . . . . . 12 (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅)(𝐹𝑧) = (𝐻𝑧))
3913, 17, 19, 38bnj1536 31050 . . . . . . . . . . 11 (𝜃 → (𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) = (𝐻 ↾ pred(𝑦, 𝐴, 𝑅)))
4039opeq2d 4440 . . . . . . . . . 10 (𝜃 → ⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩ = ⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩)
4140fveq2d 6233 . . . . . . . . 9 (𝜃 → (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
425, 6, 7, 8bnj1500 31262 . . . . . . . . . . . . . . 15 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
431, 42bnj835 30955 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
442, 43bnj832 30954 . . . . . . . . . . . . 13 (𝜓 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
454, 44bnj835 30955 . . . . . . . . . . . 12 (𝜒 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
4645, 36bnj1529 31264 . . . . . . . . . . 11 (𝜒 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
473, 46bnj835 30955 . . . . . . . . . 10 (𝜃 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
4830ssrab3 3721 . . . . . . . . . . 11 𝐷𝐴
493simp2bi 1097 . . . . . . . . . . 11 (𝜃𝑦𝐷)
5048, 49bnj1213 30995 . . . . . . . . . 10 (𝜃𝑦𝐴)
5147, 50bnj1294 31014 . . . . . . . . 9 (𝜃 → (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
521simp3bi 1098 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
532, 52bnj832 30954 . . . . . . . . . . . . 13 (𝜓 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
544, 53bnj835 30955 . . . . . . . . . . . 12 (𝜒 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
55 ax-5 1879 . . . . . . . . . . . 12 (𝑣𝐻 → ∀𝑥 𝑣𝐻)
5654, 55bnj1529 31264 . . . . . . . . . . 11 (𝜒 → ∀𝑦𝐴 (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
573, 56bnj835 30955 . . . . . . . . . 10 (𝜃 → ∀𝑦𝐴 (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
5857, 50bnj1294 31014 . . . . . . . . 9 (𝜃 → (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
5941, 51, 583eqtr4d 2695 . . . . . . . 8 (𝜃 → (𝐹𝑦) = (𝐻𝑦))
6030, 36bnj1534 31049 . . . . . . . . . . 11 𝐷 = {𝑦𝐴 ∣ (𝐹𝑦) ≠ (𝐻𝑦)}
6160bnj1538 31051 . . . . . . . . . 10 (𝑦𝐷 → (𝐹𝑦) ≠ (𝐻𝑦))
623, 61bnj836 30956 . . . . . . . . 9 (𝜃 → (𝐹𝑦) ≠ (𝐻𝑦))
6362neneqd 2828 . . . . . . . 8 (𝜃 → ¬ (𝐹𝑦) = (𝐻𝑦))
6459, 63pm2.65i 185 . . . . . . 7 ¬ 𝜃
6564nex 1771 . . . . . 6 ¬ ∃𝑦𝜃
661simp1bi 1096 . . . . . . . . . 10 (𝜑𝑅 FrSe 𝐴)
672, 66bnj832 30954 . . . . . . . . 9 (𝜓𝑅 FrSe 𝐴)
684, 67bnj835 30955 . . . . . . . 8 (𝜒𝑅 FrSe 𝐴)
6948a1i 11 . . . . . . . 8 (𝜒𝐷𝐴)
704simp2bi 1097 . . . . . . . . . 10 (𝜒𝑥𝐴)
714simp3bi 1098 . . . . . . . . . 10 (𝜒 → (𝐹𝑥) ≠ (𝐻𝑥))
7230rabeq2i 3228 . . . . . . . . . 10 (𝑥𝐷 ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
7370, 71, 72sylanbrc 699 . . . . . . . . 9 (𝜒𝑥𝐷)
74 ne0i 3954 . . . . . . . . 9 (𝑥𝐷𝐷 ≠ ∅)
7573, 74syl 17 . . . . . . . 8 (𝜒𝐷 ≠ ∅)
76 bnj69 31204 . . . . . . . 8 ((𝑅 FrSe 𝐴𝐷𝐴𝐷 ≠ ∅) → ∃𝑦𝐷𝑧𝐷 ¬ 𝑧𝑅𝑦)
7768, 69, 75, 76syl3anc 1366 . . . . . . 7 (𝜒 → ∃𝑦𝐷𝑧𝐷 ¬ 𝑧𝑅𝑦)
7877, 3bnj1209 30993 . . . . . 6 (𝜒 → ∃𝑦𝜃)
7965, 78mto 188 . . . . 5 ¬ 𝜒
8079nex 1771 . . . 4 ¬ ∃𝑥𝜒
812simprbi 479 . . . . . 6 (𝜓𝐹𝐻)
8211, 15, 81, 36bnj1542 31053 . . . . 5 (𝜓 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐻𝑥))
835, 6, 7, 8, 1, 2bnj1525 31263 . . . . 5 (𝜓 → ∀𝑥𝜓)
8482, 4, 83bnj1521 31047 . . . 4 (𝜓 → ∃𝑥𝜒)
8580, 84mto 188 . . 3 ¬ 𝜓
862, 85bnj1541 31052 . 2 (𝜑𝐹 = 𝐻)
871, 86sylbir 225 1 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030  {cab 2637   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945   ⊆ wss 3607  ∅c0 3948  ⟨cop 4216  ∪ cuni 4468   class class class wbr 4685   ↾ cres 5145   Fn wfn 5921  ‘cfv 5926   predc-bnj14 30882   FrSe w-bnj15 30886 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-bnj17 30881  df-bnj14 30883  df-bnj13 30885  df-bnj15 30887  df-bnj18 30889  df-bnj19 30891 This theorem is referenced by:  bnj1522  31266
 Copyright terms: Public domain W3C validator