Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj258 Structured version   Visualization version   GIF version

Theorem bnj258 30516
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj258 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜃) ∧ 𝜒))

Proof of Theorem bnj258
StepHypRef Expression
1 bnj257 30515 . 2 ((𝜑𝜓𝜒𝜃) ↔ (𝜑𝜓𝜃𝜒))
2 df-bnj17 30495 . 2 ((𝜑𝜓𝜃𝜒) ↔ ((𝜑𝜓𝜃) ∧ 𝜒))
31, 2bitri 264 1 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜃) ∧ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036  w-bnj17 30494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1038  df-bnj17 30495
This theorem is referenced by:  bnj707  30568  bnj1019  30593  bnj556  30713  bnj594  30725  bnj1018  30775  bnj1110  30793
  Copyright terms: Public domain W3C validator