Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj31 Structured version   Visualization version   GIF version

Theorem bnj31 30493
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj31.1 (𝜑 → ∃𝑥𝐴 𝜓)
bnj31.2 (𝜓𝜒)
Assertion
Ref Expression
bnj31 (𝜑 → ∃𝑥𝐴 𝜒)

Proof of Theorem bnj31
StepHypRef Expression
1 bnj31.1 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 bnj31.2 . . 3 (𝜓𝜒)
32reximi 3005 . 2 (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒)
41, 3syl 17 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 2908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-ral 2912  df-rex 2913
This theorem is referenced by:  bnj168  30506  bnj110  30636  bnj906  30708  bnj1253  30793  bnj1280  30796  bnj1296  30797  bnj1371  30805  bnj1497  30836  bnj1498  30837  bnj1501  30843
  Copyright terms: Public domain W3C validator