Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj535 Structured version   Visualization version   GIF version

Theorem bnj535 31259
Description: Technical lemma for bnj852 31290. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj535.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj535.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj535.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj535.4 (𝜏 ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
Assertion
Ref Expression
bnj535 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj535
StepHypRef Expression
1 bnj422 31082 . . 3 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚𝑅 FrSe 𝐴𝜏))
2 bnj251 31069 . . 3 ((𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚𝑅 FrSe 𝐴𝜏) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))))
31, 2bitri 264 . 2 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))))
4 fvex 6354 . . . . . . . . 9 (𝑓𝑝) ∈ V
5 bnj535.1 . . . . . . . . . 10 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
6 bnj535.2 . . . . . . . . . 10 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
7 bnj535.4 . . . . . . . . . 10 (𝜏 ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
85, 6, 7bnj518 31255 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
9 iunexg 7300 . . . . . . . . 9 (((𝑓𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
104, 8, 9sylancr 698 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
11 vex 3335 . . . . . . . . 9 𝑚 ∈ V
1211bnj519 31103 . . . . . . . 8 ( 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → Fun {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
1310, 12syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏) → Fun {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
14 dmsnopg 5757 . . . . . . . 8 ( 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → dom {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {𝑚})
1510, 14syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏) → dom {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {𝑚})
1613, 15bnj1422 31207 . . . . . 6 ((𝑅 FrSe 𝐴𝜏) → {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚})
17 bnj521 31104 . . . . . . 7 (𝑚 ∩ {𝑚}) = ∅
18 fnun 6150 . . . . . . 7 (((𝑓 Fn 𝑚 ∧ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚}) ∧ (𝑚 ∩ {𝑚}) = ∅) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
1917, 18mpan2 709 . . . . . 6 ((𝑓 Fn 𝑚 ∧ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚}) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
2016, 19sylan2 492 . . . . 5 ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
21 bnj535.3 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
2221fneq1i 6138 . . . . 5 (𝐺 Fn (𝑚 ∪ {𝑚}) ↔ (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
2320, 22sylibr 224 . . . 4 ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → 𝐺 Fn (𝑚 ∪ {𝑚}))
24 fneq2 6133 . . . 4 (𝑛 = (𝑚 ∪ {𝑚}) → (𝐺 Fn 𝑛𝐺 Fn (𝑚 ∪ {𝑚})))
2523, 24syl5ibr 236 . . 3 (𝑛 = (𝑚 ∪ {𝑚}) → ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → 𝐺 Fn 𝑛))
2625imp 444 . 2 ((𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))) → 𝐺 Fn 𝑛)
273, 26sylbi 207 1 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  cun 3705  cin 3706  c0 4050  {csn 4313  cop 4319   ciun 4664  dom cdm 5258  suc csuc 5878  Fun wfun 6035   Fn wfn 6036  cfv 6041  ωcom 7222  w-bnj17 31053   predc-bnj14 31055   FrSe w-bnj15 31059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pr 5047  ax-un 7106  ax-reg 8654
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-om 7223  df-bnj17 31054  df-bnj14 31056  df-bnj13 31058  df-bnj15 31060
This theorem is referenced by:  bnj543  31262
  Copyright terms: Public domain W3C validator