Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj543 Structured version   Visualization version   GIF version

Theorem bnj543 32167
Description: Technical lemma for bnj852 32195. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj543.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj543.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj543.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj543.4 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj543.5 (𝜎 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
Assertion
Ref Expression
bnj543 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj543
StepHypRef Expression
1 bnj257 31979 . . . . . . 7 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑓 Fn 𝑚𝑛 = suc 𝑚))
2 bnj268 31981 . . . . . . 7 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑓 Fn 𝑚𝑛 = suc 𝑚) ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
31, 2bitri 277 . . . . . 6 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
4 bnj253 31976 . . . . . 6 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
5 bnj256 31978 . . . . . 6 (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚) ↔ (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚)))
63, 4, 53bitr3i 303 . . . . 5 ((((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚)))
7 bnj256 31978 . . . . . 6 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
873anbi1i 1153 . . . . 5 (((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
9 bnj543.4 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
10 bnj170 31970 . . . . . . 7 ((𝑓 Fn 𝑚𝜑′𝜓′) ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚))
119, 10bitri 277 . . . . . 6 (𝜏 ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚))
12 bnj543.5 . . . . . . 7 (𝜎 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
13 3anan32 1093 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚) ↔ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
1412, 13bitri 277 . . . . . 6 (𝜎 ↔ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
1511, 14anbi12i 628 . . . . 5 ((𝜏𝜎) ↔ (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚)))
166, 8, 153bitr4ri 306 . . . 4 ((𝜏𝜎) ↔ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
1716anbi2i 624 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜏𝜎)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚)))
18 3anass 1091 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏𝜎)))
19 bnj252 31975 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚)))
2017, 18, 193bitr4i 305 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
21 df-suc 6199 . . . . . . 7 suc 𝑚 = (𝑚 ∪ {𝑚})
2221eqeq2i 2836 . . . . . 6 (𝑛 = suc 𝑚𝑛 = (𝑚 ∪ {𝑚}))
23223anbi2i 1154 . . . . 5 (((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))
2423anbi2i 624 . . . 4 ((𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)))
25 bnj252 31975 . . . 4 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)))
2624, 19, 253bitr4i 305 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))
27 bnj543.1 . . . 4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
28 bnj543.2 . . . 4 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
29 bnj543.3 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
30 biid 263 . . . 4 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
3127, 28, 29, 30bnj535 32164 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
3226, 31sylbi 219 . 2 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
3320, 32sylbi 219 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cun 3936  c0 4293  {csn 4569  cop 4575   ciun 4921  suc csuc 6195   Fn wfn 6352  cfv 6357  ωcom 7582  w-bnj17 31958   predc-bnj14 31960   FrSe w-bnj15 31964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463  ax-reg 9058
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-bnj17 31959  df-bnj14 31961  df-bnj13 31963  df-bnj15 31965
This theorem is referenced by:  bnj544  32168
  Copyright terms: Public domain W3C validator